Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cordyceps flower

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2841 KiB  
Article
An Optimized Bioassay System for the Striped Flea Beetle, Phyllotreta striolata
by Liyan Yao, Xinhua Pu, Yuanlin Wu, Ke Zhang, Alexander Berestetskiy, Qiongbo Hu and Qunfang Weng
Insects 2025, 16(5), 510; https://doi.org/10.3390/insects16050510 - 10 May 2025
Cited by 1 | Viewed by 584
Abstract
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. [...] Read more.
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. However, establishing reliable bioassay systems for SFB has been particularly challenging, especially for larval stages due to their recalcitrant rearing requirements. This study aimed to establish a standardized bioassay protocol to evaluate EPF efficacy against SFB. A specialized larval collection apparatus was developed, and the virulence of three EPF strains (Beauveria bassiana BbPs01, Metarhizium robertii MrCb01, and Cordyceps javanica IjH6102) was assessed against both adult and larval stages using a radish slice-based rearing system. Intriguingly, BbPs01 and MrCb01 exhibited significantly higher LT50 values in larvae than in adults, contrary to the typical pattern of greater larval susceptibility observed in most insect systems. We hypothesized that isothiocyanate—specifically sulforaphane, a compound abundant in radish tissues—exerts fungistatic effects that impair fungal growth and virulence. Follow-up experiments confirmed that radish-derived sulforaphane inhibited fungal activity. Through alternative host plant screening, Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) was identified as an optimal larval diet that minimally interferes with EPF bioactivity, enabling reliable virulence assessments. This study presents critical methodological advancements for SFB biocontrol research, providing a robust framework for standardized larval bioassay and novel insights into plant secondary metabolite interactions with entomopathogens. The optimized system supports the development of targeted mycoinsecticides and contributes to a deeper understanding of tri-trophic interactions in crucifer pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 1707 KiB  
Review
Edible and Medicinal Progress of Cryptotympana atrata (Fabricius) in China
by Xingcheng Xie, Han Guo, Juan Liu, Junbao Wang, Huihui Li and Zhongyuan Deng
Nutrients 2023, 15(19), 4266; https://doi.org/10.3390/nu15194266 - 5 Oct 2023
Cited by 8 | Viewed by 3237
Abstract
As an important resource insect, the Cryptotympana atrata is widely distributed in the eastern and central parts of China. The cicada slough is one of the traditional crude drugs in East Asia, and the main component is polysaccharide, which has the functions of [...] Read more.
As an important resource insect, the Cryptotympana atrata is widely distributed in the eastern and central parts of China. The cicada slough is one of the traditional crude drugs in East Asia, and the main component is polysaccharide, which has the functions of anti-convulsion, relieving asthma and improving lipid metabolism. The parasitoid fungus Cordyceps cicadae, which grows inside the cicada nymphs and forms the fruiting bodies on the surface of the host’s carcass, is also known as the “cicada flower” in China. The Cordyceps cicadae is another old, traditional Chinese medicine, which has been used as a tonic and medicine to nourish and regulate human immunity for centuries. For the further development and utilization of the golden cicada, this paper summarized the C. atrata from the aspects of their biological characteristics, distribution area, life cycle, history of edible and medicinal use, edible methods and nutritional compositions; emphatically introduced the edible and potential medicinal value of the C. atrata; and specifically expounded the research progress of its application. As one popular insect food, the prospects for the development of C. atrata have also been put forward, especially in artificial breeding technology, food safety risk assessment and medicinal value utilization. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 2117 KiB  
Article
A Novel Gammapartitivirus That Causes Changes in Fungal Development and Multi-Stress Tolerance to Important Medicinal Fungus Cordyceps chanhua
by Qiuyan Zhu, Najie Shi, Ping Wang, Yuxiang Zhang, Fan Peng, Guogen Yang and Bo Huang
J. Fungi 2022, 8(12), 1309; https://doi.org/10.3390/jof8121309 - 16 Dec 2022
Cited by 11 | Viewed by 2151
Abstract
Cicada flower, scientifically named Cordyceps chanhua, is an important and well-known Chinese cordycipitoid medicinal mushroom. Although most mycoviruses seem to induce latent infections, some mycoviruses cause host effects. However, the effects of mycovirus on the fungal development and stress tolerance of C. [...] Read more.
Cicada flower, scientifically named Cordyceps chanhua, is an important and well-known Chinese cordycipitoid medicinal mushroom. Although most mycoviruses seem to induce latent infections, some mycoviruses cause host effects. However, the effects of mycovirus on the fungal development and stress tolerance of C. chanhua remain unknown. In this study, we report a novel mycovirus designated Cordyceps chanhua partitivirus 1 (CchPV1) from C. chanhua isolate RCEF5997. The CchPV1 genome comprises dsRNA 1 and dsRNA 2, 1784 and 1563 bp in length, respectively. Phylogenetic analysis using the aa sequences of RdRp revealed that CchPV1 grouped with members of the genus Gammapartitivirus in the family Partitiviridae. We further co-cultivated on PDA donor strain RCEF5997 and recipient C. chanhua strain RCEF5833 (Vf) for 7 days, and we successfully obtained an isogenic line of strain RCEF5833 with CchPV1 (Vi) through single-spore isolation, along with ISSR marker and dsRNA extraction. The biological comparison revealed that CchPV1 infection slows the growth rate of the host, but increases the conidiation and formation of fruiting bodies of the host. Furthermore, the assessment of fungal tolerance demonstrated that CchPV1 weakens the multi-stress tolerance of the host. Thus, CchPV1 infection cause changes in fungal development and multi-stress tolerance of the host C. chanhua. The findings of this study elucidate the effects of gammapartitivirus on host entomogenous fungi and provide a novel strategy for producing high-quality fruiting bodies of C. chanhua. Full article
(This article belongs to the Special Issue Mycoviruses: Emerging Investigations on Virus-Fungal Host Interaction)
Show Figures

Figure 1

11 pages, 6602 KiB  
Article
Biosynthesis of Platinum Nanoparticles with Cordyceps Flower Extract: Characterization, Antioxidant Activity and Antibacterial Activity
by Ling Liu, Yun Jing, Ailing Guo, Xiaojing Li, Qun Li, Wukang Liu and Xinshuai Zhang
Nanomaterials 2022, 12(11), 1904; https://doi.org/10.3390/nano12111904 - 2 Jun 2022
Cited by 19 | Viewed by 2954
Abstract
The aim of this work is to develop a green route for platinum nanoparticles (PtNPs) biosynthesized using Cordyceps flower extract and to evaluate their antioxidant activity and antibacterial activity. Different characterization techniques were utilized to characterize the biosynthetic PtNPs. The results showed that [...] Read more.
The aim of this work is to develop a green route for platinum nanoparticles (PtNPs) biosynthesized using Cordyceps flower extract and to evaluate their antioxidant activity and antibacterial activity. Different characterization techniques were utilized to characterize the biosynthetic PtNPs. The results showed that PtNPs were spherical particles covered with Cordyceps flower extract. The average particle size of PtNPs in Dynamic Light Scattering was 84.67 ± 5.28 nm, while that of PtNPs in Transmission Electron Microscope was 13.34 ± 4.06 nm. Antioxidant activity of PtNPs was evaluated by DPPH free radical scavenging ability test. The results showed that the antioxidant activity was positively correlated with the concentration of PtNPs, the DPPH scavenging efficiency of PtNPs (0.50–125.00 μg/mL) was 27.77–44.00%. In addition, the morphological changes of four kinds of bacteria (Escherichia coli, Salmonella typhimurium, Bacillus subtilis, Staphylococcus aureus) exposed to PtNPs were observed by scanning electron microscope. The results showed that the antibacterial activity of PtNPs against Gram-negative bacteria was stronger than that of Gram-positive bacteria. Full article
Show Figures

Figure 1

Back to TopTop