Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = convention-enhanced delivery (CED)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6783 KB  
Article
In Silico Predictions Driving the Development of 3D-Printed Drug Delivery Systems
by Pooja Todke, Robertas Lazauskas and Jurga Bernatoniene
Pharmaceutics 2026, 18(1), 32; https://doi.org/10.3390/pharmaceutics18010032 - 26 Dec 2025
Viewed by 246
Abstract
Background: Three-dimensional printing (3DP) is a promising technology for advancing pharmaceutical research by enabling the production of personalized drug products. However, its progress has been hindered by the conventional trial-and-error approach to excipient selection and optimization. Methods: In this study, the blend module [...] Read more.
Background: Three-dimensional printing (3DP) is a promising technology for advancing pharmaceutical research by enabling the production of personalized drug products. However, its progress has been hindered by the conventional trial-and-error approach to excipient selection and optimization. Methods: In this study, the blend module was employed to determine the miscibility parameters—mixing energy (Emix) and Flory–Huggins interaction parameter (χ) to find the right excipients and drug–excipient ratio and examine the incorporation of plasticizers and lipids to enhance printability. Furthermore, molecular dynamics (MD) simulations were employed to calculate the cohesive energy density (CED) for predicting the dissolution behavior of 3DP formulations. Results: Data from 51 formulations were analyzed, enabling correlation and experimental validation of the in silico predictions. The predicted miscibility values demonstrated a strong correlation with experimental printability results. Furthermore, using a miscibility parameter, it was possible to accurately forecast minor changes in the drug-to-excipient ratio, plasticizer/lipid concentration, and hot-melt extrusion (HME) temperature that affect printability. Hydrophilic carriers exhibited lower CED values corresponding to faster drug release. In contrast, more hydrophobic carriers revealed high CED values, indicating stronger drug entrapment and sustained release. Conclusions: The miscibility parameters and MD-simulated CED values provide a practical framework for early-stage, high-throughput excipient screening. Overall, in silico prediction offers a viable strategy for modeling the entire 3DP workflow, minimizing the need for trial-and-error experimentation, and thereby accelerating the clinical translation of 3DP drug delivery systems. Full article
Show Figures

Figure 1

15 pages, 2217 KB  
Review
Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor
by Sheng-Kai Wu, Chia-Lin Tsai, Yuexi Huang and Kullervo Hynynen
Pharmaceutics 2021, 13(1), 15; https://doi.org/10.3390/pharmaceutics13010015 - 24 Dec 2020
Cited by 82 | Viewed by 9713
Abstract
The presence of blood–brain barrier (BBB) and/or blood–brain–tumor barriers (BBTB) is one of the main obstacles to effectively deliver therapeutics to our central nervous system (CNS); hence, the outcomes following treatment of malignant brain tumors remain unsatisfactory. Although some approaches regarding BBB disruption [...] Read more.
The presence of blood–brain barrier (BBB) and/or blood–brain–tumor barriers (BBTB) is one of the main obstacles to effectively deliver therapeutics to our central nervous system (CNS); hence, the outcomes following treatment of malignant brain tumors remain unsatisfactory. Although some approaches regarding BBB disruption or drug modifications have been explored, none of them reach the criteria of success. Convention-enhanced delivery (CED) directly infuses drugs to the brain tumor and surrounding tumor infiltrating area over a long period of time using special catheters. Focused ultrasound (FUS) now provides a non-invasive method to achieve this goal via combining with systemically circulating microbubbles to locally enhance the vascular permeability. In this review, different approaches of delivering therapeutic agents to the brain tumors will be discussed as well as the characterization of BBB and BBTB. We also highlight the mechanism of FUS-induced BBB modulation and the current progress of this technology in both pre-clinical and clinical studies. Full article
(This article belongs to the Special Issue Drug Delivery to Brain Tumors)
Show Figures

Figure 1

Back to TopTop