Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = connexin 32

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1336 KB  
Article
Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation
by Hyewon Park, Bokyeong Park, Kyu-sung Kim, Young Hoon Son, Sung Jin Park, Kichang Lee, Hyelim Park and Junbeom Park
Int. J. Mol. Sci. 2024, 25(20), 11085; https://doi.org/10.3390/ijms252011085 - 15 Oct 2024
Cited by 4 | Viewed by 3049
Abstract
Intermittent hypoxia (IH) has been extensively studied in recent years, demonstrating adverse and beneficial effects on several physiological systems. However, the precise mechanism underlying its cardiac effects on the heart remains unclear. This study aims to explore the effect of treatment on atrial [...] Read more.
Intermittent hypoxia (IH) has been extensively studied in recent years, demonstrating adverse and beneficial effects on several physiological systems. However, the precise mechanism underlying its cardiac effects on the heart remains unclear. This study aims to explore the effect of treatment on atrial fibrillation under IH conditions, providing data that can potentially be used in the treatment of heart disease. An atrial fibrillation (AF) model was induced by injecting monocrotaline (MCT, 60 mg/kg) into rats. The study included 32 rats divided into four groups: Control, Control + IH, AF, and AF + IH. We evaluated molecular changes associated with AF using ELISA and Western blot and performed electrophysiological experiments to evaluate AF. Arrhythmia-related calcium and fibrosis markers were investigated. Phosphorylation levels of CaMKII, Phospholamban, and RyR2 all increased in the AF group but decreased in the IH-exposed group. Additionally, fibrosis marker expressions such as SMA, MMP2, MMP9, and TGF-β increased in the AF group but were significantly downregulated with IH treatment. Connexin 43 and AQP4 expression were restored in the IH-treated group. These findings suggest that IH may prevent AF by downregulating the expression of calcium-handling proteins and fibrosis-associated proteins in an AF-induced rat model. Full article
(This article belongs to the Special Issue Therapeutic Target in Cardiovascular Disease)
Show Figures

Figure 1

14 pages, 3504 KB  
Communication
Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders
by Elena Della Morte, Chiara Giannasi, Alice Valenza, Francesca Cadelano, Alessandro Aldegheri, Luigi Zagra, Stefania Niada and Anna Teresa Brini
Int. J. Mol. Sci. 2024, 25(15), 8547; https://doi.org/10.3390/ijms25158547 - 5 Aug 2024
Viewed by 5954
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 [...] Read more.
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (−73% and −32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (−65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders. Full article
Show Figures

Figure 1

15 pages, 57969 KB  
Article
Connexin Expression in Human Minor Salivary Glands: An Immunohistochemical Microscopy Study
by Alessandra Falleni, Stefania Moscato, Giovanni Fulvio, Enza Polizzi, Margherita Bernardeschi, Francesco Bianchi, Valentina Donati, Manuela Cabiati, Chiara Ippolito, Silvia Del Ry, Chiara Baldini and Letizia Mattii
Molecules 2022, 27(18), 5926; https://doi.org/10.3390/molecules27185926 - 12 Sep 2022
Cited by 2 | Viewed by 2105
Abstract
Connexins (Cxs) are transmembrane proteins involved in the formation of hemichannels and gap junctions (GJs). GJs are involved in various physiological functions, including secretion in glandular tissue. It has been demonstrated that Cx26, Cx32, and Cx43 are mainly expressed in glands, but no [...] Read more.
Connexins (Cxs) are transmembrane proteins involved in the formation of hemichannels and gap junctions (GJs). GJs are involved in various physiological functions, including secretion in glandular tissue. It has been demonstrated that Cx26, Cx32, and Cx43 are mainly expressed in glands, but no data are available in human salivary glands to date. The aim of our study was to investigate the presence and the localization of Cxs in human minor labial salivary glands. Immunofluorescence and immunoelectron microscopy were employed to evaluate the Cx26, Cx32, and Cx43 protein in human labial salivary gland biopsies (hLSGBs). RT-PCR was also used to detect their mRNA expression. Cx expression was found at both the mRNA and protein levels in all hLSGBs analysed. Cxs were observed at the level of the duct and acinar cells, as well as in myoepithelial cells. The localization of the three Cx types was very similar, suggesting colocalization of these Cxs in the same connexons. These results demonstrated the presence of Cxs in human salivary glands for the first time. Moreover, the few samples with primary Sjögren’s Syndrome analysed only by immunofluorescence showed an alteration of the Cx expression, indicating that these proteins could be involved in salivary gland dysfunctions. Full article
(This article belongs to the Special Issue Electron Microscopy in Molecules Analysis)
Show Figures

Figure 1

9 pages, 2601 KB  
Case Report
Distinct Phenotypic and microRNA Expression in X-Linked Charcot–Marie–Tooth Correlated with a Novel Mutation in the GJB1 Gene
by Valentina Pegoraro, Daniele Sabbatini, Leonardo Salviati and Corrado Angelini
Muscles 2022, 1(1), 66-74; https://doi.org/10.3390/muscles1010007 - 19 May 2022
Cited by 1 | Viewed by 3155
Abstract
We investigated genetic and clinical features in two siblings with an unreported frameshift mutation in the GJB1 gene, encoding connexin 32, to study CMTX-1 and its intrafamilial phenotypic variability. Connexin 32 is a gap junction protein that is located in paranodal regions and [...] Read more.
We investigated genetic and clinical features in two siblings with an unreported frameshift mutation in the GJB1 gene, encoding connexin 32, to study CMTX-1 and its intrafamilial phenotypic variability. Connexin 32 is a gap junction protein that is located in paranodal regions and Schmidt–Lanterman incisures. Clinical features, family history, and genetic and microRNA information were collected. Genetic analysis determination was performed on genomic DNA from the two cases. Muscle-specific miR-206 was also investigated in serum. A muscle biopsy was conducted in one case, and EMG with conduction velocities was performed in both patients. In the first genetic analysis, no duplication of the PMP22 gene was found. A second genetic analysis of a panel of genes associated with inherited peripheral neuropathies was performed. We found a frameshift mutation in the connexin 32 (GJB1) gene, c.281_287del in hemizygosity, not previously reported, that segregated with the clinical phenotype. An X-linked hereditary sensory motor neuropathy was caused by the mutation in the connexin 32 gene. We found overexpression of miR-206 that was 4-fold up-regulated in the older brother and over 10-fold in the younger brother versus the controls; this might be correlated with a different muscle mass and regeneration. The two siblings presented differently evolving neuropathies due to environmental factors and lifestyles that caused nerve degeneration. We hypothesized that in this X-linked CMT, there is no expression of a truncated connexin 32 (Cx32) protein, with loss of function markedly reduced in the gap junction. In the peripheral nervous system (PNS), this might be mitigated by the presence of another connexin, Cx43. Such a reduction might affect not only gap junction formation but also myelination and muscle trophism, resulting in variable miR-206 expressivity. Full article
Show Figures

Figure 1

15 pages, 2085 KB  
Article
Connexin Expression in Pituitary Adenomas and the Effects of Overexpression of Connexin 43 in Pituitary Tumor Cell Lines
by Bruno Nunes, Helena Pópulo, José Manuel Lopes, Marta Reis, Gilvan Nascimento, Ana Giselia Nascimento, Janaína Fernandes, Manuel Faria, Denise Pires de Carvalho, Paula Soares and Leandro Miranda-Alves
Genes 2022, 13(4), 674; https://doi.org/10.3390/genes13040674 - 12 Apr 2022
Cited by 3 | Viewed by 2775
Abstract
Gap junction intercellular communication (GJIC) is considered a key mechanism in the regulation of tissue homeostasis. GJIC structures are organized in two transmembrane channels, with each channel formed by connexins (Cxs). GJIC and Cxs expression alterations are related to the process of tumorigenesis [...] Read more.
Gap junction intercellular communication (GJIC) is considered a key mechanism in the regulation of tissue homeostasis. GJIC structures are organized in two transmembrane channels, with each channel formed by connexins (Cxs). GJIC and Cxs expression alterations are related to the process of tumorigenesis in different cell types. Pituitary neuroendocrine tumors (PitNETs) represent 15–20% of intracranial neoplasms, and usually display benign behavior. Nevertheless, some may have aggressive behavior, invading adjacent tissues, and featuring a high proliferation rate. We aimed to assess the expression and relevance of GJIC and Cxs proteins in PitNETs. We evaluated the mRNA expression levels of Cx26, 32, and 43, and the protein expression of Cx43 in a series of PitNETs. In addition, we overexpressed Cx43 in pituitary tumor cell lines. At the mRNA level, we observed variable expression of all the connexins in the tumor samples. Cx43 protein expression was absent in most of the pituitary tumor samples that were studied. Moreover, in vitro studies revealed that the overexpression of Cx43 decreases cell growth and induces apoptosis in pituitary tumor cell lines. Our results indicate that the downregulation of Cx43 protein might be involved in the tumorigenesis of most pituitary adenomas and have a potential therapeutic value for pituitary tumor therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1822 KB  
Article
Age Estimate of GJB2-p.(Arg143Trp) Founder Variant in Hearing Impairment in Ghana, Suggests Multiple Independent Origins across Populations
by Elvis Twumasi Aboagye, Samuel Mawuli Adadey, Kevin Esoh, Mario Jonas, Carmen de Kock, Lucas Amenga-Etego, Gordon A. Awandare and Ambroise Wonkam
Biology 2022, 11(3), 476; https://doi.org/10.3390/biology11030476 - 21 Mar 2022
Cited by 10 | Viewed by 4340
Abstract
Gap junction protein beta 2 (GJB2) (connexin 26) variants are commonly implicated in non-syndromic hearing impairment (NSHI). In Ghana, the GJB2 variant p.(Arg143Trp) is the largest contributor to NSHI and has a reported prevalence of 25.9% in affected multiplex families. To [...] Read more.
Gap junction protein beta 2 (GJB2) (connexin 26) variants are commonly implicated in non-syndromic hearing impairment (NSHI). In Ghana, the GJB2 variant p.(Arg143Trp) is the largest contributor to NSHI and has a reported prevalence of 25.9% in affected multiplex families. To date, in the African continent, GJB2-p.(Arg143Trp) has only been reported in Ghana. Using whole-exome sequencing data from 32 individuals from 16 families segregating NSHI, and 38 unrelated hearing controls with the same ethnolinguistic background, we investigated the date and origin of p.(Arg143Trp) in Ghana using linked markers. With a Bayesian linkage disequilibrium gene mapping method, we estimated GJB2-p.(Arg143Trp) to have originated about 9625 years (385 generations) ago in Ghana. A haplotype analysis comparing data extracted from Ghanaians and those from the 1000 Genomes project revealed that GJB2-p.(Arg143Trp) is carried on different haplotype backgrounds in Ghanaian and Japanese populations, as well as among populations of European ancestry, lending further support to the multiple independent origins of the variant. In addition, we found substantial haplotype conservation in the genetic background of Ghanaian individuals with biallelic GJB2-p.(Arg143Trp) compared to the GJB2-p.(Arg143Trp)-negative group with normal hearing from Ghana, suggesting a strong evolutionary constraint in this genomic region in Ghanaian populations that are homozygous for GJB2-p.(Arg143Trp). The present study evaluates the age of GJB2-p.(Arg143Trp) at 9625 years and supports the multiple independent origins of this variant in the global population. Full article
Show Figures

Figure 1

15 pages, 5498 KB  
Article
Lactoferrin Prevents Hepatic Injury and Fibrosis via the Inhibition of NF-κB Signaling in a Rat Non-Alcoholic Steatohepatitis Model
by Yoshinaga Aoyama, Aya Naiki-Ito, Kuang Xiaochen, Masayuki Komura, Hiroyuki Kato, Yuko Nagayasu, Shingo Inaguma, Hiroyuki Tsuda, Mamoru Tomita, Yoichi Matsuo, Shuji Takiguchi and Satoru Takahashi
Nutrients 2022, 14(1), 42; https://doi.org/10.3390/nu14010042 - 23 Dec 2021
Cited by 32 | Viewed by 5968
Abstract
Non-alcoholic steatohepatitis (NASH) can cause liver cirrhosis and hepatocellular carcinoma (HCC), with cases increasing worldwide. To reduce the incidence of liver cirrhosis and HCC, NASH is targeted for the development of treatments, along with viral hepatitis and alcoholic hepatitis. Lactoferrin (LF) has antioxidant, [...] Read more.
Non-alcoholic steatohepatitis (NASH) can cause liver cirrhosis and hepatocellular carcinoma (HCC), with cases increasing worldwide. To reduce the incidence of liver cirrhosis and HCC, NASH is targeted for the development of treatments, along with viral hepatitis and alcoholic hepatitis. Lactoferrin (LF) has antioxidant, anti-cancer, and anti-inflammatory activities. However, whether LF affects NASH and fibrosis remains unelucidated. We aimed to clarify the chemopreventive effect of LF on NASH progression. We used a NASH model with metabolic syndrome established using connexin 32 (Cx32) dominant negative transgenic (Cx32ΔTg) rats. Cx32ΔTg rats (7 weeks old) were fed a high-fat diet and intraperitoneally injected with dimethylnitrosamine (DMN). Rats were divided into three groups for LF treatment at 0, 100, or 500 mg/kg/day for 17 weeks. Lactoferrin significantly protected steatosis and lobular inflammation in Cx32ΔTg rat livers and attenuated bridging fibrosis or liver cirrhosis induced by DMN. By quantitative RT–PCR, LF significantly down-regulated inflammatory (Tnf-α, Il-6, Il-18, and Il-1β) and fibrosis-related (Tgf-β1, Timp2, and Col1a1) cytokine mRNAs. Phosphorylated nuclear factor (NF)-κB protein decreased in response to LF, while phosphorylated JNK protein was unaffected. These results indicate that LF might act as a chemopreventive agent to prevent hepatic injury, inflammation, and fibrosis in NASH via NF-κB inactivation. Full article
(This article belongs to the Special Issue Natural Products and Disease Prevention, Relief and Treatment)
Show Figures

Figure 1

20 pages, 6309 KB  
Article
Dysregulation of Blood-Brain Barrier and Exacerbated Inflammatory Response in Cx47-Deficient Mice after Induction of EAE
by Filippos Stavropoulos, Elena Georgiou, Irene Sargiannidou and Kleopas A. Kleopa
Pharmaceuticals 2021, 14(7), 621; https://doi.org/10.3390/ph14070621 - 28 Jun 2021
Cited by 19 | Viewed by 5065
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in connexin 32 (Cx32) or Cx47 knockout (KO) mice with deficiency in oligodendrocyte gap junctions (GJs) results in a more severe disease course. In particular, Cx47 KO EAE mice experience [...] Read more.
Induction of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in connexin 32 (Cx32) or Cx47 knockout (KO) mice with deficiency in oligodendrocyte gap junctions (GJs) results in a more severe disease course. In particular, Cx47 KO EAE mice experience an earlier EAE onset and more pronounced disease severity, accompanied by dysregulated pro-inflammatory responses preceding the disease manifestations. In this study, analysis of relevant pro-inflammatory cytokines in wild type EAE, Cx32 KO EAE, and Cx47 KO EAE mice revealed altered expression of Vcam-1 preceding EAE [7 days post injection (dpi)], of Ccl2 at the onset of EAE (12 dpi), and of Gm-csf at the peak of EAE (24 dpi) in Cx47 KO EAE mice. Moreover, Cx47 KO EAE mice exhibited more severe blood-spinal cord barrier (BSCB) disruption, enhanced astrogliosis with defects in tight junction formation at the glia limitans, and increased T-cell infiltration prior to disease onset. Thus, Cx47 deficiency appears to cause dysregulation of the inflammatory profile and BSCB integrity, promoting early astrocyte responses in Cx47 KO EAE mice that lead to a more severe EAE outcome. Further investigation into the role of oligodendrocytic Cx47 in EAE and multiple sclerosis pathology is warranted. Full article
(This article belongs to the Special Issue Cerebral Production and Action of Pro-inflammatory Cytokines)
Show Figures

Graphical abstract

11 pages, 1830 KB  
Article
Aberrant Splicing in GJB1 and the Relevance of 5′ UTR in CMTX1 Pathogenesis
by Federica Boso, Federica Taioli, Ilaria Cabrini, Tiziana Cavallaro and Gian Maria Fabrizi
Brain Sci. 2021, 11(1), 24; https://doi.org/10.3390/brainsci11010024 - 27 Dec 2020
Cited by 11 | Viewed by 3743
Abstract
The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions [...] Read more.
The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions in the myelin sheath of peripheral nerves. Despite the advances of next-generation sequencing (NGS), attention has only recently also focused on noncoding regions. We describe two unrelated families with a c.-17+1G>T transversion in the 5′ untranslated region (UTR) of GJB1 that cosegregates with typical features of CMTX1. As suggested by in silico analysis, the mutation affects the regulatory sequence that controls the proper splicing of the intron in the corresponding mRNA. The retention of the intron is also associated with reduced levels of the transcript and the loss of immunofluorescent staining for Cx32 in the nerve biopsy, thus supporting the hypothesis of mRNA instability as a pathogenic mechanism in these families. Therefore, our report corroborates the role of 5′ UTR of GJB1 in the pathogenesis of CMTX1 and emphasizes the need to include this region in routine GJB1 screening, as well as in NGS panels. Full article
(This article belongs to the Special Issue Pathology of Peripheral Neuropathies )
Show Figures

Graphical abstract

16 pages, 4363 KB  
Article
Ischemic Postconditioning Reduces Reperfusion Arrhythmias by Adenosine Receptors and Protein Kinase C Activation but Is Independent of KATP Channels or Connexin 43
by Emiliano Raúl Diez, Jose Antonio Sánchez, Natalia Jorgelina Prado, Amira Zulma Ponce Zumino, David García-Dorado, Roberto Miguel Miatello and Antonio Rodríguez-Sinovas
Int. J. Mol. Sci. 2019, 20(23), 5927; https://doi.org/10.3390/ijms20235927 - 25 Nov 2019
Cited by 12 | Viewed by 3767
Abstract
Ischemic postconditioning (IPoC) reduces reperfusion arrhythmias but the antiarrhythmic mechanisms remain unknown. The aim of this study was to analyze IPoC electrophysiological effects and the role played by adenosine A1, A2A and A3 receptors, protein kinase C, ATP-dependent potassium [...] Read more.
Ischemic postconditioning (IPoC) reduces reperfusion arrhythmias but the antiarrhythmic mechanisms remain unknown. The aim of this study was to analyze IPoC electrophysiological effects and the role played by adenosine A1, A2A and A3 receptors, protein kinase C, ATP-dependent potassium (KATP) channels, and connexin 43. IPoC reduced reperfusion arrhythmias (mainly sustained ventricular fibrillation) in isolated rat hearts, an effect associated with a transient delay in epicardial electrical activation, and with action potential shortening. Electrical impedance measurements and Lucifer-Yellow diffusion assays agreed with such activation delay. However, this delay persisted during IPoC in isolated mouse hearts in which connexin 43 was replaced by connexin 32 and in mice with conditional deletion of connexin 43. Adenosine A1, A2A and A3 receptor blockade antagonized the antiarrhythmic effect of IPoC and the associated action potential shortening, whereas exogenous adenosine reduced reperfusion arrhythmias and shortened action potential duration. Protein kinase C inhibition by chelerythrine abolished the protective effect of IPoC but did not modify the effects on action potential duration. On the other hand, glibenclamide, a KATP inhibitor, antagonized the action potential shortening but did not interfere with the antiarrhythmic effect. The antiarrhythmic mechanisms of IPoC involve adenosine receptor activation and are associated with action potential shortening. However, this action potential shortening is not essential for protection, as it persisted during protein kinase C inhibition, a maneuver that abolished IPoC protection. Furthermore, glibenclamide induced the opposite effects. In addition, IPoC delays electrical activation and electrical impedance recovery during reperfusion, but these effects are independent of connexin 43. Full article
Show Figures

Figure 1

Back to TopTop