Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = conjugate image artifact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 30393 KiB  
Article
Comparison between Widefield Optical Coherence Tomography Devices in Eyes with High Myopia
by Federico Corvi, Federico Zicarelli, Matteo Airaldi, Salvatore Parrulli, Mariano Cozzi, Davide Monteduro, Francesco Romano, SriniVas R. Sadda and Giovanni Staurenghi
Diagnostics 2021, 11(4), 658; https://doi.org/10.3390/diagnostics11040658 - 6 Apr 2021
Cited by 1 | Viewed by 3265
Abstract
Background: To compare four different optical coherence tomography (OCT) devices for visualization of retinal and subretinal layers in highly myopic eyes. Methods: In this prospective, observational, cross-sectional study, consecutive patients with high myopia and control subjects were imaged by four OCT devices: Spectralis [...] Read more.
Background: To compare four different optical coherence tomography (OCT) devices for visualization of retinal and subretinal layers in highly myopic eyes. Methods: In this prospective, observational, cross-sectional study, consecutive patients with high myopia and control subjects were imaged by four OCT devices: Spectralis OCT2, PlexElite 2.0 100 kHz, PlexElite 2.0 200 kHz and the Canon Xephilio OCT-S1. The acquisition protocol for comparison consisted of single vertical and horizontal line scans centered on the fovea. Comparison between the devices in the extent of visible retina, presence of conjugate image or mirror artifacts, visibility of the sclerochoroidal interface and retrobulbar tissue. Results: 30 eyes with high myopia and 30 control subjects were analyzed. The visualized RPE length was significantly different between the OCT devices with Xephilio OCT-S1 imaging the largest extent (p < 0.0001). The proportion of eyes with conjugate image artifact was significantly higher with the Spectralis OCT (p < 0.0001), and lower with the PlexElite 200 kHz (p < 0.0001). No difference in visibility of the sclerochoroidal interface was noted among instruments. The retrobulbar tissue was visible in a higher proportion of eyes using swept-source PlexElite 100 kHz and 200 kHz (p < 0.007) compared to the other devices. Conclusions: In highly myopic eyes, the four OCT devices demonstrated significant differences in the extent of the retina imaged, in the prevalence of conjugate image artifact, and in the visualization of the retrobulbar tissue. Full article
Show Figures

Figure 1

14 pages, 6132 KiB  
Article
Blind Deconvolution Based on Compressed Sensing with bi-l0-l2-norm Regularization in Light Microscopy Image
by Kyuseok Kim and Ji-Youn Kim
Int. J. Environ. Res. Public Health 2021, 18(4), 1789; https://doi.org/10.3390/ijerph18041789 - 12 Feb 2021
Cited by 4 | Viewed by 2292
Abstract
Blind deconvolution of light microscopy images could improve the ability of distinguishing cell-level substances. In this study, we investigated the blind deconvolution framework for a light microscope image, which combines the benefits of bi-l0-l2-norm regularization with compressed [...] Read more.
Blind deconvolution of light microscopy images could improve the ability of distinguishing cell-level substances. In this study, we investigated the blind deconvolution framework for a light microscope image, which combines the benefits of bi-l0-l2-norm regularization with compressed sensing and conjugated gradient algorithms. Several existing regularization approaches were limited by staircase artifacts (or cartooned artifacts) and noise amplification. Thus, we implemented our strategy to overcome these problems using the bi-l0-l2-norm regularization proposed. It was investigated through simulations and experiments using optical microscopy images including the background noise. The sharpness was improved through the successful image restoration while minimizing the noise amplification. In addition, quantitative factors of the restored images, including the intensity profile, root-mean-square error (RMSE), edge preservation index (EPI), structural similarity index measure (SSIM), and normalized noise power spectrum, were improved compared to those of existing or comparative images. In particular, the results of using the proposed method showed RMSE, EPI, and SSIM values of approximately 0.12, 0.81, and 0.88 when compared with the reference. In addition, RMSE, EPI, and SSIM values in the restored image were proven to be improved by about 5.97, 1.26, and 1.61 times compared with the degraded image. Consequently, the proposed method is expected to be effective for image restoration and to reduce the cost of a high-performance light microscope. Full article
(This article belongs to the Section Digital Health)
Show Figures

Figure 1

12 pages, 2912 KiB  
Article
Five-Frame Variable Phase-Shifting Method for Full-Range Spectral-Domain Optical Coherence Tomography
by Jiewen Lin, Shuncong Zhong, Qiukun Zhang and Weiqiang Chen
Appl. Sci. 2018, 8(9), 1580; https://doi.org/10.3390/app8091580 - 7 Sep 2018
Cited by 4 | Viewed by 4589
Abstract
In order to achieve a better complex conjugate artifacts (CCA) suppression, we propose a five-frame variable phase-shifting (FVP) method for spectral domain optical coherence tomography (SD-OCT). The traditional five-frame invariant phase-shifting (FIP) method employs five phase shifts correlate with the center wavelength. However, [...] Read more.
In order to achieve a better complex conjugate artifacts (CCA) suppression, we propose a five-frame variable phase-shifting (FVP) method for spectral domain optical coherence tomography (SD-OCT). The traditional five-frame invariant phase-shifting (FIP) method employs five phase shifts correlate with the center wavelength. However, due to the effects of polychromatic errors, the FIP method cannot get excellent CCA suppression. In the present work, we employ FVP method using variable phase shifts which is dependent on all the wavelengths and therefore, theoretically, the system would have no effects of polychromatic errors. This is the reason why the FVP method would achieve better CCA suppression than the FIP method. Comparative studies between FIP and FVP methods are investigated in the work. Subsequently, we develop a homemade SD-OCT system involving a homemade spectrometer, by which the anterior segment of a rat’s eyeball is measured. The experimental results demonstrate that the quality of OCT images is significantly improved by using FVP method with an increase by a factor of 1.7 on the CCA suppression of SD-OCT. FVP provides a new strategy for complex conjugate artifacts suppression for spectral domain optical coherence tomography. Full article
(This article belongs to the Special Issue Optical Coherence Tomography and its Applications)
Show Figures

Figure 1

Back to TopTop