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Abstract: Blind deconvolution of light microscopy images could improve the ability of distinguishing
cell-level substances. In this study, we investigated the blind deconvolution framework for a light
microscope image, which combines the benefits of bi-l0-l2-norm regularization with compressed sens-
ing and conjugated gradient algorithms. Several existing regularization approaches were limited by
staircase artifacts (or cartooned artifacts) and noise amplification. Thus, we implemented our strategy
to overcome these problems using the bi-l0-l2-norm regularization proposed. It was investigated
through simulations and experiments using optical microscopy images including the background
noise. The sharpness was improved through the successful image restoration while minimizing the
noise amplification. In addition, quantitative factors of the restored images, including the intensity
profile, root-mean-square error (RMSE), edge preservation index (EPI), structural similarity index
measure (SSIM), and normalized noise power spectrum, were improved compared to those of existing
or comparative images. In particular, the results of using the proposed method showed RMSE, EPI,
and SSIM values of approximately 0.12, 0.81, and 0.88 when compared with the reference. In addition,
RMSE, EPI, and SSIM values in the restored image were proven to be improved by about 5.97, 1.26,
and 1.61 times compared with the degraded image. Consequently, the proposed method is expected
to be effective for image restoration and to reduce the cost of a high-performance light microscope.

Keywords: blind deconvolution; bi-l0-l2-norm regularization; compressed sensing; qualitative and
quantitative analyses; light microscopy image

1. Introduction

Light microscopy based on magnification using an objective lens is widely used
as one of the simplest and easiest methods for observing various tissues at the cellular
level. Among the techniques for image acquisition, the use of a microscope is a direct
method useful for observing and analyzing morphological changes with respect to various
conditions. Although a light microscope can be used to most easily observe the changes in
the tissue, it is limited in observing fine parts owing to the limitations of spatial resolution
and noise amplification. Thus, it is essential to improve the qualities of light microscopic
images for accurate analysis [1]. The approach of development of hardware and software
technologies is mainly used to improve the microscopic image quality. The development
field of hardware technology for improving microscopic images is the most suitable method
to achieve a desired level of image quality, but has a large disadvantage of high cost. Thus,
methods using image processing technologies are actively studied [2–4].

Generally, a light microscopy image can be mathematically modelled as a linear-
translation-invariant system incorporating the background noise [5]:

g(x, y) = ps f (x, y)⊗⊗ f (x, y) + N(x, y) (1)
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where g is the image obtained by containing distortion components in the x- and y-
coordinates, f is a clean image, psf is the point-spread function (PSF), which indicates
the degree of blurring occurring owing to the finite imaging system (e.g., focal spot, pixel
size), and ⊗⊗ represents the two-dimensional (2D) convolution operator, which is used to
obtain the f (x, y) by predicting and measuring the ps f (x, y) to perform the deconvolution.
N is the background signal dominated by Poisson and Gaussian noises. In light microscopy
images, obtained by numerous photons, the Poisson noise can be assumed as an additive
Gaussian noise [6]. Therefore, it is very important to perform an accurate psf prediction
while effectively controlling the noise.

To overcome these difficulties, image deconvolution algorithms have been studied to
obtain successfully restored images under the conditions of an unknown PSF containing
the image degradation rate of the imaging system, including the Bayesian method, inverse
Radon transform, iteration methods, and deep-learning approaches [7–13]. These methods
were used to obtain a considerably effective result for the ill-posed problem. However,
one of the main difficulties of these methods is associated with the presence of noise in the
microscopy image, because the noise component prompts an imperfect edge detection and
often leads to an unstable or false solution owing to finding the inexact PSF. Moreover, the
noise should be amplified by the deconvolution process as a side effect.

A typical approach to controlling the noise while implementing the deconvolution
method is to solve the inverse problem using appropriate regularization terms,

f̂ (x, y) = argmin
f ,ps f

‖ps f (x, y)⊗⊗ f (x, y)− g(x, y)‖2
2 + R( f ) (2)

where R( f ) is the regularization term used to compensate the noise component to calculate
the error in the part of ‖ps f (x, y)⊗⊗ f (x, y)− g(x, y)‖2

2. This approach enables effective
PSF estimation and image restoration, even in images with noise. R( f ) is observed in
several lp-norm-based priors including the lp-norm-based prior (p decreases at regular
intervals while iterating) [14], normalized sparsity-based image prior [15], approximate
l0-norm-based image prior [16], and reweighted l2-norm-based image prior [17]. However,
these approaches have limitations, including the staircase artifacts (cartooned artifacts) in
l2-norm-based minimization [18] and noise amplification in sparse deconvolution by l1-
norm-based minimization [19]. Shao et al. [20] introduced the bi-l0-l2-norm regularization
strategy with an effective performance decreasing the computational cost to restore the
degraded images. Their strategy improves the accuracy of the kernel estimation owing to
the strategy of evasion from the background noise.

The objective of this study was to apply the bi-l0-l2-norm regularization strategy in
light microscopy. For that objective, quantitative evaluations, including visual assessment,
intensity profile, root-mean-square error (RMSE) [21], edge preservation index (EPI) [22],
structural similarity index measure (SSIM) [23], and normalized noise power spectrum
(NNPS) [24] were used in both simulation and experiment images. We used the compressed
sensing (CS) [25–28] and conjugate gradient (CG) [29] methods to solve the optimization
problem with a high accuracy. Section 2 briefly describes the bi-l0-l2-norm regularization
strategy in blind deconvolution and study conditions. Section 3 presents the results and
discussion, while Section 4 summarizes the conclusions of this study.

2. Proposed Blind Deconvolution of the Microscopy Image

Figure 1 shows the entire flowchart of the proposed method incorporating the bi-
l0-l2-norm-based regularization strategy for an accurate blind deconvolution of a light
microscopy image.



Int. J. Environ. Res. Public Health 2021, 18, 1789 3 of 14
Int. J. Environ. Res. Public Health 2021, 18, x  3 of 14 
 

 

 

Figure 1. Flowchart of the blind deconvolution using the proposed method with the bi-l0-l2-norm 

regularization of the light microscopy image. 

Figure 1. Flowchart of the blind deconvolution using the proposed method with the bi-l0-l2-norm
regularization of the light microscopy image.



Int. J. Environ. Res. Public Health 2021, 18, 1789 4 of 14

This method can be divided into two main parts. (1) The PSF is estimated using the
CG method and (2) the restored image is predicted using the CS method. In the blind
deconvolution scheme, both PSF and restored image are simultaneously and recursively
optimized through the two iterative loops. Briefly, the degraded image g acquired by the
light microscopy imaging system is assumed to be the current image fc

(0) before entering
the proposed blind deconvolution scheme. In the first step, the latent PSF of the system
is estimated. We use the CG-based framework to obtain the PSF between the Laplacian
image of fc

(0) and g, according to Kim et al. [12],

∇2gc = ∇2 fc
(k) ⊗⊗ps fc

(b),

ps fc
(b+1) = argmin

ps fc(b)∈Q

1
2

(
ps fc

(b)
)T
⊗⊗∇2 fc

(k) ⊗⊗ps fc
(b) −

(
ps fc

(b)
)T
⊗⊗∇2gc, (3)

where ∇2 is the Laplacian operator, and the updated PSF, ps fc
(b+1), can be effectively

predicted in a short time through CG-based approach. Here, c is the red–green–blue
(RGB) color and ps fc

(b+1) calculated for each color channel. And then, fc
(k+1) is calculated

to obtain the objective function using the CS-based framework with the bi-l0-l2-norm-
based regularization,

fc
(k+1) = argmin

fc(k)∈Q

1
2
‖ fc

(k) ⊗⊗ps fc
(b+1)(x, y)− gc‖2

2 + αR
(

fc
(k)
)

,

R
(

fc
(k)
)
= β f

(
‖∇ fc

(k)‖0 +
λ f

β f
‖∇ fc

(k)‖
2
2

)
(4)

where Q is the feasible set of fc
(k), α is the tuning parameter between the fidelity term and

regularization term (we used α = 500, obtained empirically), ∇ is the first-order linear
differential operator, β f is positive factors (heuristically, β f = 0.25 used in this study), and
λ f is fixed to 5. The optimization problem (Equation (4)) can be efficiently solved using the
accelerated gradient-projection Barzilai–Borwein (GPBB) method [30]. fc

(k+1) is computed
to determine the step size with the GPBB strategy for the next updated image. The loop is
repeated until the mismatch between fc

(k+1) and fc
(k) is smaller than the tolerance ε (in

this work, 20 to 30 iterations required for solving the f̂ , approximately). When the value
is greater than the specified tolerance (in this study, we used 10−6, empirically), ps fc

(b+1)

used in Equation (4) is replaced with ps fc
(b), and the obtained fc

(k+1) is replaced with fc
(k)

in Equation (3).

3. Results and Discussion

In the simulation, we use a numerical star phantom (ISO 15775, Siemens star test
chart, image size = 2000 × 2000 pixels) to measure the system resolution by the degree of
distinction between line pairs. The phantom has a diameter of 400 µm with 36 pairs of
spokes (bright and dark regions) with a pixel pitch of 1.7 µm. Figure 2 shows a 3D plot
of the PSF used to convolve the clean image. The PSF is based on a Gaussian distribution
(kernel size = 51 × 51 pixels, sigma = 1.5 pixels). We perform the convolution to obtain
a blurred image using the clean image and PSF. In addition, white noise with a Gaussian
distribution (mean = 0, variation = 0.01) is added to the blurred image to synthesize the
degraded image.

Microscopic images of haematoxylin–eosin (H–E) staining in a mouse oral mucosa
were acquired for this study. The H–E-stained tissue was produced according to the general
histological sample preparation, including fixation in 4% paraformaldehyde, paraffin em-
bedding, tissue sectioning (7 µm), and H–E staining. The microscope images were acquired
using a Leica series imaging system (Leica Microsystem, Germany), which consisted of a
Leica DM500 microscope (40×/0.65 NA/0.31 mm W.D., 100×/1.25 NA/0.10 mm W.D.),
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Leica ICC50 E camera (Aptina 1/2 inch CMOS sensor, pixel size = 3.2 µm × 3.2 µm, pixel
resolution = 2048 × 1536), and Leica LAS EZ software.
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Figure 2. Three-dimensional (3D) plot of the PSF used to convolve the clean image in the simulation
study. The PSF is based on a Gaussian distribution with a sigma of 1.5 pixels.

The simulations and experiments were performed using MATLABTM (MathWorks,
Natick, MA, USA, R2019a) (computer hardware: central processing unit: Intel, Santa Clara,
CA, USA, Xeon Platinum 8168 @ 2.70 GHz; random-access memory: Samsung, South Korea,
8G×4 DDR4 21300; graphics processing unit (GPU): NVIDIA, Santa Clara, CA, USA, GTX
1080 11 GB). The proposed blind deconvolution method required less than 2 s with the
GPU parallel processing, which confirms its utility for practical applications.

We measured the profile, RMSE, EPI, SSIM, and NNPS, to evaluate the image quality
using the proposed blind deconvolution framework. Among these evaluation parameters,
the NPS evaluation parameter was used to calculate the noise of the microscope image
based on the distribution in the frequency domain. NPS describes the retention and
noise amplitudes of imaging system, including microscopes, and is a parameter that can
accurately represent uncertainty and inaccuracies from system signals. In this study, the
NPS was measured by introducing the concept of non-uniform gain in a microscopic image
shape model with fixed noise. Based on the measured NPS, we normalized to derive the
final NNPS result. Regarding the NNPS, the noise characteristic of the image is measured
to evaluate the spectrum.

NPS(u, v) =
K2

N
〈|={ f lat_area(x, y)}|2〉, ,

NNPS(u, v) =
NPS(u, v)

(large− area signal)2 , (5)

where K is the detector pixel size, and = represents the Fourier transform operator. The
NNPS measures the change in the noise amplitude as a function of the spatial frequency
and bridges the noise and spatial resolution characteristics of an image.

Figure 3 shows the simulation results, including the reference image, degraded image
(Equation (1)), and image restored using the proposed method. In order to visually
analyze the acquired image more clearly, two parts were enlarged and shown below
the representative image.

The enlarged images of boxes B and C indicate that the resolution of the restored
image is closer to the resolution of the reference image than to that of the degraded image.
By observing the pattern on the edge of the acquired simulation image, we confirmed that
blurring occurred in the degraded image in the all areas, and in particular, the restored
image showed a very similar pattern to the reference image. In addition, the degree of
image degradation on the edge side of the degraded image was confirmed to be such that
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there was not much difficulty in visual observation. However, as a result of observing
center area of the degraded image, it was confirmed that the noise amplification and the
patterns were clearly blurred compared to the reference image. As a result of applying
the proposed algorithm, the image in the center area was reliably improved, and we can
solve the problem of image quality deterioration, which is the most important part when
observing a microscopic image of a tissue.
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Figure 3. Simulation results including the reference image, degraded image, and image restored
using the proposed method. Enlarged images of the regions in boxes B and C are shown.

Moreover, Figure 4 shows enlarged patches of the three images in Figure 3 for the
background areas marked with box A. We confirmed that the patch distribution was
obtained differently in each of the three images. In particular, the proposed method was
successfully used for blind deconvolution while minimizing the noise amplification.
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Figure 5 shows the resultant profile measured along the broken red line in Figure 3
with box C. It confirms that the blurring rate of the restored image profile is smaller than
that of the degraded image and that the profile of the restored image is similar to that
of the reference image. In the profile result graph, it was confirmed that the difference
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between the reference image and the degraded image was very large at both ends, and
the difference tended to decrease as the direction of the pixel position in the middle was
increased. Likewise, the profile result of the restored image showed a similar trend as above
result, but the width of change was significantly reduced. Moreover, the same tendency is
observed in the image evaluation through the quantitative measurement through image
quality evaluation factors.
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Figure 6 shows the evaluation values obtained using the RMSE, EPI, and SSIM with
simulation images.
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According to the recently published papers by Saha et al., it can be confirmed that
RMSE parameter is used as a quantitative index for the analysis of the utility of deep
learning techniques in 3D microscopy images [31]. In addition, according to a study con-
ducted at Linden et al., the RMSE evaluation parameter was used to confirm the difference
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between true and estimation data when analyzing the usefulness of the image super reso-
lution algorithm for microscope images [32]. In this study, RMSE evaluation parameter
was also used to determine how much the proposed method was improved compared to
the degraded image when compared with the reference image. The acquired RMSEs are
about 0.72 and 0.12 for the degraded and restored images, respectively. In particular, we
demonstrated that RMSE value of the image to which the proposed method was applied is
approximately six times higher than the value measured in the degraded image.

In microscopic images, when information on an edge area of an acquired tissue image
is lost, a situation in which it is difficult to distinguish it from an adjacent tissue often occurs.
However, most of the evaluation of the edge information to demonstrate the usefulness of
the image processing technology in the microscope image is performed visually or using
a profile. Recently, methods for evaluating the sharpness index of an image based on
no-reference including the blind/referenceless image spatial quality evaluator or image
quality evaluator parameter have been developed and used [33–35]. In researches by Kim
et al., a no-reference-based method was used to evaluate the noise removal efficiency that
is not revealed in the visual evaluation when the denoising algorithm is applied to the
light microscopy image [1]. However, since this index has the disadvantage that it cannot
accurately measure edge information, it is rarely used as a general method for microscopic
image evaluation. Thus, in this study, we tried to evaluate the edge preserving ability of
the proposed algorithm using accurate EPI evaluation parameters, which are widely used
in other imaging fields. The acquired EPIs are about 0.65 and 0.81 for the degraded and
restored images, respectively. In particular, we demonstrated that EPI value of the image to
which the proposed method was applied is approximately 1.3 times higher than the value
measured in the degraded image. Based on our EPI results, the improvement of the edge
information of the tissue light microscopic image is expected to contribute to the precise
analysis of the shape of teeth as well as the ability to more clearly determine the boundary
between the hard tissue and soft tissue, which are difficult to distinguish.

The SSIM is a method of measuring structural distortion under the assumption that
the evaluation of the degree of loss of image quality is caused by the structural distortion
of the signal itself rather than by a certain type of error. This method measures image
quality through a top-down approach starting from the overall point of view, and can
complement the limitations of the error sensitivity approach by observing luminance,
contrast, and structure in complex parameters [36]. SSIM can measure the subjectively
perceived image quality of distorted images, so it can be widely used in tissue images
using a light microscope. The acquired SSIMs are about 0.54 and 0.88 for the degraded and
restored images, respectively. We demonstrated that SSIM value of the image to which the
proposed method was applied is approximately 1.6 times higher than the value measured
in the degraded image. In addition, it was confirmed that the high SSIM value when the
proposed algorithm was used in the light microscopic image of the oral mucosa used in this
study can achieve more accurate embryology and anatomical information in the local area.

These results indicate that the proposed algorithm well estimates the PSF using the
single image while controlling the noise amplification. Figure 7 shows the images of PSF
(reference) to make the blurred image and PSF (estimated) using the proposed algorithm.
Note that it can be seen that these profiles are almost similar. For the quantitative evaluation,
Figure 8 shows that the profiles of two PSF at line AB is almost close.

Here, the profile implemented the Gaussian fitting based on the extracted results.
The sigma of PSF (reference) was measured as 1.5 pixels and the that of PSF (estimated)
was measured as 1.84 pixels. Accurately estimation of PSF means that successful image
restoration is possible and implies that a method of repeatedly updating the PSF and image
(blind-deconvolution method) is successfully performed.
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the Figure 7.

Figure 9 shows the experiment results for the degraded image at a magnification of
40, restored image (l1-norm), and restored image (proposed). To compare the effectiveness
of the bi-l0-l2-norm-based regularization, we used the l1-norm-based regularization,

fc
(k+1) = argmin

fc(k)∈Q

1
2
‖ fc

(k) ⊗⊗ps fc
(b+1) − gc‖2

2 + αR1

(
fc
(k)
)

,

R1

(
fc
(k)
)
= β f

(
‖∇ fc

(k)‖1

)
(6)

All parameters in Equation (6) are used identically to those in Equation (4). The
enlarged image (box A in Figure 9) restored using the proposed method exhibits a similar
sharpness improvement to that of the comparative image (l1-norm-based restored image),
at a smaller amplification of the noise. The tendency of these results can be confirmed by
images with a higher magnification.
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Figure 9. Experiment results for the degraded image (magnification of 40), restored image (l1-norm-
based), and image restored using the proposed method.

Figure 10 shows examples of the three images at a magnification of 400. We con-
firmed the improvement of sharpness while suppressing the noise amplification as a
result of Figure 9. This result indicates that the proposed algorithm can produce effective
results, even in various magnification images. For the quantitative evaluation of noise
characteristics, Figure 11 shows that the NNPS characteristics of the restored image (pro-
posed) at spatial frequencies over about 0.10 lp/µm are improved compared to those
of the degraded image (×40) and restored image (l1-norm), owing to the bi-l0-l2-norm
regularization penalty. These results demonstrate that the proposed method effectively
improves the resolution when noise is present in the light microscope image.
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Figure 11. NNPS results (obtained using ROI B in Figure 9) of the degraded image (×40), restored
image (l1-norm), and restored image (proposed) at all spatial frequencies (lp/µm).

In order to compare and evaluate the degree of restoration according to the type of
algorithm in the real experimental image, the peak signal to noise ratio (PSNR) and the
natural image quality evaluator (NIQE) [34], which is a representative no-reference-based
evaluation parameter (Figure 12), were used. Since there is no gold standard image in the
real experimental image, a parameter that can compare the whole image was used. We
derived PSNR results of 13.10 and 24.18, respectively, when using the conventional l1-norm
method and the proposed method. In addition, the NIQE evaluation results were 11.92
and 4.90, respectively, when the conventional l1-norm method proposed method were
used. In particular, the differences between PSNR and NIQE in the two methods were 1.84
and 2.44 times, respectively. The proposed method, which has small mean square error
value that can analyze the restoration rate of an image and the variation between pixels,
is expected to be able to better distinguish tissues in microscopic images. In particular,
the improved NIQE results are expected to be of great help in applying a deep learning
approach that required measuring the distance between features acquired form an image
database in the future.
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Light microscope is used mainly to generate magnified images of small objects. It
has been used in biology because it can be easily operated. However, limitations exist in
light microscopy, including the resolution and magnification. A light microscope with
transmitted light at a very high magnification can distort the image of a point object [37].
The resolution of the light microscope is a measure of the microscope’s ability to distinguish
two adjacent structures. In particular, the size of diffraction and resolving power of a micro-
scopic image are determined by the wavelength and number of apertures of the objective
lens. According to these results, it is challenging to clearly distinguish adjacent areas in
light microscopy images [38]. One of the approaches to fully utilize the capabilities of the
microscope is to obtain a sufficiently high magnification. However, the light microscope
has a lower resolution than those of other systems because of the diffuse propagation of the
refracted light waves from the lens, which leads to blurred images. Therefore, we applied
the bi-l0-l2-norm regularization strategy as the image processing technology to improve
the qualities of microscopic images. The proposed method will contribute to studies using
microscopes as basic systems.

In addition, this study was limited to subjective and quantitative analysis of the
applicability of the proposed algorithm in microscopic images. In the future, based on the
results of this study, we will conduct a subjective evaluation for users such as imaging
experts, doctors, and radiologists to further analyze usefulness.

4. Conclusions

This paper presents a blind deconvolution framework for a light microscope image,
which combines the benefits of the bi-l0-l2-norm regularization with the CS and CG algo-
rithms. It provided a considerable improvement in the resolution while maintaining the
noise amplification. According to our simulation and experiment results, the RMSEs of
the degraded and restored images were about 0.72 and 0.12, respectively. The EPI of the
restored image was about 0.81, about 1.3 times that of the degraded image. The SSIMs
for the degraded and restored images were about 0.54 and 0.88, respectively. Moreover,
the NNPS characteristics of the restored image (proposed) at spatial frequencies over
about 0.10 lp/µm were improved compared to those of the degraded image (×40) and
restored image (l1-norm). These results demonstrate the viability of the proposed method
for provision of improved light microscope images. Consequently, the proposed method is
expected to be effective for image restoration and can be used to compensate the limitations
of imaging hardware in terms of image quality.
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