Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = conantokins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 18340 KB  
Article
Changes in NMDA Receptor Function in Rapid Ischemic Tolerance: A Potential Role for Tri-Heteromeric NMDA Receptors
by Mian Xie, Tiandong Leng, Samaneh Maysami, Andrea Pearson, Roger Simon, Zhi-Gang Xiong and Robert Meller
Biomolecules 2022, 12(9), 1214; https://doi.org/10.3390/biom12091214 - 1 Sep 2022
Cited by 2 | Viewed by 3211
Abstract
In this study, we characterize biophysical changes in NMDA receptor function in response to brief non-injurious ischemic stress (ischemic preconditioning). Electrophysiological studies show NMDA receptor function is reduced following preconditioning in cultured rat cortical neurons. This functional change is not due to changes [...] Read more.
In this study, we characterize biophysical changes in NMDA receptor function in response to brief non-injurious ischemic stress (ischemic preconditioning). Electrophysiological studies show NMDA receptor function is reduced following preconditioning in cultured rat cortical neurons. This functional change is not due to changes in the reversal potential of the receptor, but an increase in desensitization. We performed concentration–response analysis of NMDA-evoked currents, and demonstrate that preconditioned neurons show a reduced potency of NMDA to evoke currents, an increase in Mg2+ sensitivity, but no change in glycine sensitivity. Antagonists studies show a reduced inhibition of GluN2B antagonists that have an allosteric mode of action (ifenprodil and R-25-6981), but competitive antagonists at the GluR2A and 2B receptor (NVP-AMM077 and conantokin-G) appear to have similar potency to block currents. Biochemical studies show a reduction in membrane surface GluN2B subunits, and an increased co-immunoprecipitation of GluN2A with GluN2B subunits, suggestive of tri-heteromeric receptor formation. Finally, we show that blocking actin remodeling with jasplakinolide, a mechanism of rapid ischemic tolerance, prevents NMDA receptor functional changes and co-immunoprecipitation of GluN2A and 2B subunits. Together, this study shows that alterations in NMDA receptor function following preconditioning ischemia are associated with neuroprotection in rapid ischemic tolerance. Full article
Show Figures

Figure 1

15 pages, 3375 KB  
Article
A Conantokin Peptide Con-T[M8Q] Inhibits Morphine Dependence with High Potency and Low Side Effects
by Zhuguo Liu, Zheng Yu, Shuo Yu, Cui Zhu, Mingxin Dong, Wenxiang Mao, Jie Hu, Mary Prorok, Ruibin Su and Qiuyun Dai
Mar. Drugs 2021, 19(1), 44; https://doi.org/10.3390/md19010044 - 19 Jan 2021
Cited by 8 | Viewed by 3302
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a [...] Read more.
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-β, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage. Full article
(This article belongs to the Special Issue Cone Snail Venom Peptides, from Treasure Hunt to Drug Leads)
Show Figures

Figure 1

18 pages, 2085 KB  
Article
Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa
by Mriga Dutt, Sébastien Dutertre, Ai-Hua Jin, Vincent Lavergne, Paul Francis Alewood and Richard James Lewis
Mar. Drugs 2019, 17(1), 71; https://doi.org/10.3390/md17010071 - 21 Jan 2019
Cited by 25 | Viewed by 5867
Abstract
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic [...] Read more.
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa. Full article
(This article belongs to the Special Issue Ion Channels as Marine Drug Targets)
Show Figures

Figure 1

Back to TopTop