Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = compound energy system operation scheduling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3710 KB  
Review
Problems and Strategies for Maintenance Scheduling of a Giant Cascaded Hydropower System in the Lower Jinsha River
by Le Li, Yushu Wu, Yuanyuan Han, Zixuan Xu, Xingye Wu, Yan Luo and Jianjian Shen
Energies 2025, 18(14), 3831; https://doi.org/10.3390/en18143831 - 18 Jul 2025
Viewed by 363
Abstract
Maintenance scheduling of hydropower units is essential for ensuring the operational security and stability of large-scale cascaded hydropower systems and for improving the efficiency of water energy utilization. This study takes the Cascaded Hydropower System of the Lower Jinsha River (CHSJS) as a [...] Read more.
Maintenance scheduling of hydropower units is essential for ensuring the operational security and stability of large-scale cascaded hydropower systems and for improving the efficiency of water energy utilization. This study takes the Cascaded Hydropower System of the Lower Jinsha River (CHSJS) as a representative case, identifying four key challenges facing maintenance planning: multi-dimensional influencing factor coupling, spatial and temporal conflicts with generation dispatch, coordination with transmission line maintenance, and compound uncertainties of inflow and load. To address these issues, four strategic recommendations are proposed: (1) identifying and quantifying the impacts of multi-factor influences on maintenance planning; (2) developing integrated models for the co-optimization of power generation dispatch and maintenance scheduling; (3) formulating coordinated maintenance strategies for hydropower units and associated transmission infrastructure; and (4) constructing joint models to manage the coupled uncertainties of inflow and load. The strategy proposed in this study was applied to the CHSJS, obtaining the weight of the impact factor. The coordinated unit maintenance arrangements of transmission line maintenance periods increased from 56% to 97%. This study highlights the critical need for synergistic optimization of generation dispatch and maintenance scheduling in large-scale cascaded hydropower systems and provides a methodological foundation for future research and practical applications. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 5774 KB  
Article
Research and Demonstration of Operation Optimization Method of Zero-Carbon Building’s Compound Energy System Based on Day-Ahead Planning and Intraday Rolling Optimization Algorithm
by Biao Qiao, Jiankai Dong, Wei Xu, Ji Li and Fei Lu
Buildings 2025, 15(5), 836; https://doi.org/10.3390/buildings15050836 - 6 Mar 2025
Cited by 1 | Viewed by 755
Abstract
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it [...] Read more.
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it is necessary to carry out relevant optimization methods. This paper investigated the current research status of the control and scheduling of compound energy systems in zero-carbon buildings at home and abroad, selected a typical zero-carbon building as the research object, analyzed its energy system’s operational data, and proposed an operation scheduling algorithm based on day-ahead flexible programming and intraday rolling optimization. The multi-energy flow control algorithm model was developed to optimize the operation strategy of heat pump, photovoltaic, and energy storage systems. Then, the paper applied the algorithm model to a typical zero-carbon building project, and verified the actual effect of the method through the actual operational data. After applying the method in this paper, the self-absorption rate of photovoltaic power generation in the building increased by 7.13%. The research results provide a theoretical model and data support for the operation control of the zero-carbon building’s compound energy system, and could promote the market application of the compound energy system. Full article
(This article belongs to the Special Issue Research on Solar Energy System and Storage for Sustainable Buildings)
Show Figures

Figure 1

18 pages, 4285 KB  
Article
Thermal Sensor Allocation for Effective and Efficient Heat Transfer Measurements in Transportation Systems
by Jorge Saavedra and David Gonzalez Cuadrado
Sensors 2023, 23(5), 2803; https://doi.org/10.3390/s23052803 - 3 Mar 2023
Cited by 3 | Viewed by 1926
Abstract
Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under [...] Read more.
Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under standard working conditions, those elements become heat sources either during their entire operational envelope or during given phases of it. Consequently, in order to maintain a reasonable working temperature, active cooling is required. The refrigeration may consist of the activation of internal cooling systems relying on fluid circulation or air suction and circulation pulled from the environment. However, in both scenarios pulling surrounding air or making use of coolant pumps increases the power demand. The augmented power demand has a direct impact on the power plant or electric generator autonomy, while instigating higher power demand and substandard performance from the power electronics and batteries’ compounds. In this manuscript, we present a methodology to efficiently estimate the heat flux load generated by internal heat sources. By accurately and inexpensively computing the heat flux, it is possible to identify the coolant requirements to optimize the use of the available resources. Based on local thermal measurements fed into a Kriging interpolator, we can accurately compute the heat flux minimizing the number of sensors required. Considering the need for effective thermal load description toward efficient cooling scheduling. This manuscript presents a procedure based on temperature distribution reconstruction via a Kriging interpolator to monitor the surface temperature using a minimal number of sensors. The sensors are allocated by means of a global optimization that minimizes the reconstruction error. The surface temperature distribution is then fed into a heat conduction solver that processes the heat flux of the proposed casing, providing an affordable and efficient way of controlling the thermal load. Conjugate URANS simulations are used to simulate the performance of an aluminum casing and demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 1761 KB  
Article
Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT)
by George Dan Moiş, Teodora Sanislav, Silviu Corneliu Folea and Sherali Zeadally
Sensors 2018, 18(6), 1709; https://doi.org/10.3390/s18061709 - 25 May 2018
Cited by 29 | Viewed by 9463
Abstract
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile [...] Read more.
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings. Full article
Show Figures

Figure 1

Back to TopTop