Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = composite bamboo shear walls

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5625 KiB  
Article
Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties
by Wanwan Xia, Yujie Gao, Zhenkai Zhang, Yuhan Jie, Jingwen Zhang, Yueying Cao, Qiuyue Wu, Tao Li, Wentao Ji and Yaoyuan Gao
Sustainability 2025, 17(15), 6753; https://doi.org/10.3390/su17156753 - 24 Jul 2025
Viewed by 359
Abstract
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The [...] Read more.
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The dataset, which included 249 sets of measurement data, was derived from 51 disparate connection specimens fabricated with engineered bamboo—a renewable and low-carbon construction material. Utilizing factor analysis, a ranking table recording the comprehensive score of each connection specimen was established to select the optimal connection type. Eight machine learning models were employed to analyze and predict the mechanical performance of these connection specimens. Through comparison, the most efficient model was selected, and five hyperparameter optimization algorithms were implemented to further enhance its prediction accuracy. The analysis results revealed that the Random Forest (RF) model demonstrated superior classification performance, prediction accuracy, and generalization ability, achieving approximately 61% accuracy on the test set (the highest among all models). In hyperparameter optimization, the RF model processed through Bayesian Optimization (BO) further improved its predictive accuracy to about 67%, outperforming both its non-optimized version and models optimized using the other algorithms. Considering the mechanical performance of connections within TWS composite structures, applying the BO algorithm to the RF model significantly improved the predictive accuracy. This approach enables the identification of the most suitable specimen type based on newly provided mechanical performance parameter sets, providing a data-driven pathway for sustainable bamboo–steel composite structure design. Full article
Show Figures

Figure 1

24 pages, 2575 KiB  
Article
A Comparative Life Cycle Assessment (LCA) of a Composite Bamboo Shear Wall System Developed for El Salvador
by Louisa Young, Sebastian Kaminski, Mike Kovacs and Edwin Zea Escamilla
Sustainability 2024, 16(17), 7602; https://doi.org/10.3390/su16177602 - 2 Sep 2024
Cited by 3 | Viewed by 3077
Abstract
To meet the UN sustainable development goal targets by 2030, it is necessary to provide adequate, resilient, and affordable housing solutions which are also low-carbon. In the context of affordable housing in El Salvador, an improved vernacular construction system, following the composite bamboo [...] Read more.
To meet the UN sustainable development goal targets by 2030, it is necessary to provide adequate, resilient, and affordable housing solutions which are also low-carbon. In the context of affordable housing in El Salvador, an improved vernacular construction system, following the composite bamboo shear wall (CBSW) technology, has been developed as a feasible option to fill the current housing deficit. A life cycle assessment (LCA) has been conducted comparing a house built using the CBSW system with a reinforced concrete hollow block masonry system, considering the A1 to A5 (raw material production and manufacture) and B4 (replacement) life cycle modules. The LCA scope was limited to modules where there was sufficient confidence in the inputs. End-of-life modules were excluded as there is a large degree of uncertainty in the end-of-life scenarios for these materials in the regional context. The LCA results show that the CBSW system has approximately 64% of the global warming potential (GWP) of the reinforced masonry house, and when considering biogenic carbon, this reduces to 53%. There is additional potential to minimise impacts and maximise end-of-life opportunities (e.g., re-use, biofuel, etc.) for the biomaterials within the CBSW system, if considering modules beyond the scope of this paper, and this needs further study. Nevertheless, the results from this LCA—of limited A1 to A5 and B4 scope—show that the CBSW system has significant sustainability advantages over conventional construction systems and is considered a promising solution to alleviate the housing deficit in El Salvador. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

20 pages, 4544 KiB  
Article
Bamboo as a Sustainable Building Material for Innovative, Low-Cost Housing Construction
by Jan Bredenoord
Sustainability 2024, 16(6), 2347; https://doi.org/10.3390/su16062347 - 12 Mar 2024
Cited by 20 | Viewed by 23746
Abstract
Bamboo is commonly used as a construction material in low-cost housing projects located in tropical and subtropical countries. This practice is especially prevalent in rural areas where bamboo grows naturally and families have experience working with it. Bamboo can be a sustainable building [...] Read more.
Bamboo is commonly used as a construction material in low-cost housing projects located in tropical and subtropical countries. This practice is especially prevalent in rural areas where bamboo grows naturally and families have experience working with it. Bamboo can be a sustainable building material for homes, even in cases where houses need to be resistant to earthquakes or storms. The traditional bahareque technology was enhanced in Costa Rica and Colombia to make it earthquake resistant. After the year 2000, this technology was transferred to several other countries in Latin America and Asia, gaining recognition as an innovative building technique. Many successful examples of bamboo housing constructions can be found in various countries, where modern architectural solutions are combined with innovative bamboo methods. Local communities can play a crucial role in bamboo processing, allowing residents to actively participate in the construction of their homes under technical supervision. This emphasizes the social sustainability aspect associated with bamboo. Ensuring the durability of bamboo housing constructions is paramount for the longevity of the houses, highlighting the need for technical assistance for self-builders and resident groups. With proper organization, bamboo housing has the potential to become part of the social production of housing. Full article
Show Figures

Figure 1

17 pages, 6109 KiB  
Article
Effect of Furfurylation on Bamboo-Scrimber Composites
by Wanju Li, Guijun Xie, Hongxia Ma and Xingwei Li
Materials 2023, 16(7), 2931; https://doi.org/10.3390/ma16072931 - 6 Apr 2023
Cited by 3 | Viewed by 2274
Abstract
Bamboo is a material with excellent development prospects. It is increasingly used in furniture, decoration, building, and bridge construction. In this study, Furfurylated bamboo bundles and phenol-formaldehyde resin were used to make bamboo-scrimber composites (BSCs) via molding-recombination and hot-pressing processes. The effects of [...] Read more.
Bamboo is a material with excellent development prospects. It is increasingly used in furniture, decoration, building, and bridge construction. In this study, Furfurylated bamboo bundles and phenol-formaldehyde resin were used to make bamboo-scrimber composites (BSCs) via molding-recombination and hot-pressing processes. The effects of the impregnation mode, furfuryl-alcohol concentration, and curing temperature on the various physical–mechanical properties and durability of the composites were evaluated. Scanning-electron microscopy (SEM) was used to observe the microstructural differences. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were employed to investigate changes in the chemical constituents. The heat resistance was also investigated using thermogravimetric analysis. The results showed that the density of the furfurylated BSC increased by up to 22% compared with that of the BSC-C with the same paving mode. The furfurylated BSCs had lower moisture contents: the average moisture content of the furfurylated BSCs was 25~50% lower than that of the BSC-C. In addition, the furfurylated BSCs showed better dimensional stability and durability, since the decay-resistance grade of the BSCs was raised from decay resistance (class II) to strong decay resistance (class I). In terms of the mechanical properties, the furfurylation had a slight negative effect on the mechanical strength of the BSCs, and the modulus of rupture (MOR) and horizontal shear strength (HSS) of the BSCs were increased to a certain extent under most of the treatment conditions. In particular, the highest HSS for indoor use and MOR of the furfurylated BSCs increased by 21% and 9% compared with those of the untreated BSCs, respectively. The SEM results indicated that the FA resin effectively filled in the bamboo-cell cavities and vessels, and the modified bamboo-parenchyma cells were compressed more tightly and evenly. The FTIR and XPS spectroscopy showed that the hydroxyl group of carboxylic acid of the bamboo-cell-wall component reacted with that of the furan ring, and the cellulose and hemicellulose underwent acid hydrolysis to a certain extent after the furfurylation. Overall, the present study highlights the potential of furfurylation as a modification method to enhance BSC products. Further research should focus on improving the ability of furfurylated BSCs to prevent the growth of Botryodiplodia theobromae. Additionally, the influence of furfuryl-alcohol resin on the bonding strengths of PF adhesives should be further clarified. Full article
Show Figures

Graphical abstract

Back to TopTop