Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = color m-mode echocardiography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1184 KiB  
Article
Differences in the Impact of Left Ventricular Outflow Tract Obstruction on Intraventricular Pressure Gradient in Feline Hypertrophic Cardiomyopathy
by Miki Hirose, Momoko Watanabe, Aki Takeuchi, Aimi Yokoi, Kazuyuki Terai, Katsuhiro Matsuura, Ken Takahashi and Ryou Tanaka
Animals 2024, 14(22), 3320; https://doi.org/10.3390/ani14223320 - 19 Nov 2024
Cited by 1 | Viewed by 1624
Abstract
Hypertrophic cardiomyopathy (HCM) is a common form of cardiomyopathy in cats, and heart failure occurs as diastolic dysfunction progresses. HCM in cats is broadly classified as non-obstructive and obstructive hypertrophic cardiomyopathy, depending on the presence or absence of outflow tract obstruction. Measurement of [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a common form of cardiomyopathy in cats, and heart failure occurs as diastolic dysfunction progresses. HCM in cats is broadly classified as non-obstructive and obstructive hypertrophic cardiomyopathy, depending on the presence or absence of outflow tract obstruction. Measurement of the intraventricular pressure differences (IVPD) using color M-mode (CMM) has attracted attention as a reliable diastolic index as it correlates with catheterization, the gold standard for the assessment of diastolic performance. Because IVPD is affected by the size of the heart, the intraventricular pressure gradient (IVPG) index, which is unaffected by heart size, is by calculated by dividing IVPD by LV length. In the present study, CMM IVPG was used to non-invasively assess diastolic impairment in cats with obstructive hypertrophic cardiomyopathy. This study was conducted on 10 control cats and 18 cats in the HCM group. Although no severe left atrial enlargement was observed in the HCM group, the basal IVPG was significantly increased in the HOCM group compared to the control group. Although IVPD typically suggests impaired diastolic function and reduced ventricular compliance, the significant increase observed in the HOCM group compared to controls may suggest an indirect elevation in left atrial pressure, likely secondary to left ventricular outflow tract obstruction. The increase in IVPG in HOCM, as shown in this study, is a pathological effect of left ventricular outflow tract obstruction that cannot be detected by conventional echocardiographic indices, and evaluating IVPG is useful to evaluate cardiac function from a perspective that differs from conventional methods. Full article
(This article belongs to the Special Issue Advances in Diagnostic Imaging in Small Animal Cardiology)
Show Figures

Figure 1

14 pages, 2577 KiB  
Article
Clinical Outcomes and Quality of Life after Patent Foramen Ovale (PFO) Closure in Patients with Stroke/Transient Ischemic Attack of Undetermined Cause and Other PFO-Associated Clinical Conditions: A Single-Center Experience
by Salvatore Evola, Emmanuele Antonio Camarda, Oreste Fabio Triolo, Daniele Adorno, Alessandro D’Agostino, Giuseppina Novo and Eustaquio Maria Onorato
J. Clin. Med. 2023, 12(18), 5788; https://doi.org/10.3390/jcm12185788 - 5 Sep 2023
Cited by 4 | Viewed by 3300
Abstract
Introduction: The aim of this study was to assess clinical outcomes and quality of life after PFO closure in patients with previous stroke/TIA of undetermined cause and in patients with other complex PFO-associated clinical conditions. Methods: Between July 2009 and December 2019 at [...] Read more.
Introduction: The aim of this study was to assess clinical outcomes and quality of life after PFO closure in patients with previous stroke/TIA of undetermined cause and in patients with other complex PFO-associated clinical conditions. Methods: Between July 2009 and December 2019 at our University Cardiology Department, 118 consecutive patients underwent a thorough diagnostic work-up including standardized history taking, clinical evaluation, full neurological examination, screening for thrombophilia, brain magnetic resonance imaging (MRI), ultrasound–Doppler sonography of supra-aortic vessels and 24 h ECG Holter monitoring. Anatomo-morphological evaluation using 2D transthoracic/transesophageal echocardiography (TTE/TEE) color Doppler and functional assessment using contrast TTE (cTTE) in the apical four-chamber view and contrast transcranial Doppler (cTCD) using power M-mode modality were performed to verify the presence, location and amount of right-to-left shunting via PFO or other extracardiac source. Completed questionnaires based on the Quality-of-Life Short Form-36 (QoL SF-36) and Migraine Disability Assessment (MIDAS) were obtained from the patients before PFO closure and after 12 months. Contrast TTE/TEE and cTCD were performed at dismission, 1, 6 and 12 months and yearly thereafter. Brain MRI was performed at 1-year follow-up in 54 patients. Results: Transcatheter PFO closure was performed in 106 selected symptomatic patients (mean age 41.7 ± 10.7 years, range 16–63, 65% women) with the following conditions: ischemic stroke (n = 23), transient ischemic attack (n = 22), peripheral and coronary embolism (n = 2), MRI lesions without cerebrovascular clinical events (n = 53), platypnea–orthodeoxia (n = 1), decompression sickness (n = 1) and refractory migraine without ischemic cerebral lesions (n = 4). The implanted devices were Occlutech Figulla Flex I/II PFO (n = 99), Occlutech UNI (n = 3), Amplatzer PFO (n = 3) and CeraFlex PFO occluders (n = 1). Procedures were performed under local anesthesia and rotational intracardiac monitoring (Ultra ICE) alone. The devices were correctly implanted in all patients. The mean fluoroscopy time was 15 ± 5 min (range = 10–45 min) and the mean procedural time was 55 ± 20 min (range = 35–90 min). The total occlusion rate at follow-up (mean 50 months, range 3–100) was 98.1%. No recurrent neurological events were observed in the long-term follow-up. Conclusions: The data collected in this study demonstrate that percutaneous PFO closure is a safe and effective procedure, showing long-term prevention of recurrent cerebrovascular events, significant reduction in migraine symptoms and substantial improvement in quality of life. Full article
Show Figures

Figure 1

17 pages, 3194 KiB  
Review
Non-Invasive Assessment of the Intraventricular Pressure Using Novel Color M-Mode Echocardiography in Animal Studies: Current Status and Future Perspectives in Veterinary Medicine
by Ahmed S. Mandour, Ahmed Farag, Mahmoud A. Y. Helal, Gamal El-Masry, Salim Al-Rejaie, Ken Takahashi, Tomohiko Yoshida, Lina Hamabe and Ryou Tanaka
Animals 2023, 13(15), 2452; https://doi.org/10.3390/ani13152452 - 29 Jul 2023
Cited by 5 | Viewed by 3537
Abstract
The assessment of diastolic function has received great interest in order to comprehend its crucial role in the pathophysiology of heart failure and for the early identification of cardiac events. Silent changes in the intraventricular flow (IVF) dynamics occur before the deterioration of [...] Read more.
The assessment of diastolic function has received great interest in order to comprehend its crucial role in the pathophysiology of heart failure and for the early identification of cardiac events. Silent changes in the intraventricular flow (IVF) dynamics occur before the deterioration of the cardiac wall, although they cannot be detected using conventional echocardiography. Collective information on left ventricular (LV) pressures throughout the cardiac cycle has great value when dealing with patients with altered hemodynamics. Accurate pressure measurement inside the ventricle can be obtained by invasive methods to determine the LV diastolic pressures, which reflect the myocardial relaxation and compliance. However, catheterization is only feasible in the laboratory setting and is not suitable for clinical use due to its disadvantages. In contrast, echocardiography is simple, safe, and accessible. Color M-mode echocardiography (CMME) is an advanced cardiac evaluation technique that can measure the intraventricular pressure differences (IVPDs) and intraventricular pressure gradients (IVPGs) based on the Doppler shift of the IVF. Recently, the assessment of IVPD and IVPG has gained growing interest in the cardiovascular literature in both animal and human studies as a non-invasive method for the early diagnosis of cardiac dysfunctions, especially diastolic ones. The usability of IVPD and IVPG has been reported in various surgically induced heart failure or pharmacologically altered cardiac functions in rats, dogs, cats, and goats. This report aims to give an overview of the current studies of CMME-derived IVPD and IVPG in animal studies and its feasibility for clinical application in veterinary practice and to provide the prospects of the technique’s ability to improve our understanding. Full article
Show Figures

Figure 1

12 pages, 2837 KiB  
Article
Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats
by Akira Yairo, Ahmed S. Mandour, Katsuhiro Matsuura, Tomohiko Yoshida, Danfu Ma, Pitipat Kitpipatkun, Konosuke Kato, Chieh-Jen Cheng, Hussein M. El-Husseiny, Takashi Tanaka, Kazumi Shimada, Lina Hamabe, Akiko Uemura, Ken Takahashi and Ryou Tanaka
Diagnostics 2021, 11(8), 1403; https://doi.org/10.3390/diagnostics11081403 - 3 Aug 2021
Cited by 20 | Viewed by 3446
Abstract
Evaluation of diastolic function is a pivotal challenge due to limitations of the conventional echocardiography, especially when the heart rate is rapid as in rats. Currently, by using color M-mode echocardiography (CMME), intraventricular pressure difference (IVPD) and intraventricular pressure gradient (IVPG) in early [...] Read more.
Evaluation of diastolic function is a pivotal challenge due to limitations of the conventional echocardiography, especially when the heart rate is rapid as in rats. Currently, by using color M-mode echocardiography (CMME), intraventricular pressure difference (IVPD) and intraventricular pressure gradient (IVPG) in early diastole can be generated and are available as echocardiographic indices. These indices are expected to be useful for the early diagnosis of heart failure (HF), especially diastolic dysfunction. There have not been any studies demonstrating changes in IVPD and IVPG in response to changes in loading conditions in rats. Therefore, the present study aims to evaluate CMME-derived IVPD and IVPG changes in rats under various loading conditions. Twenty rats were included, divided into two groups for two different experiments, and underwent jugular vein catheterization under inhalational anesthetics. Conventional echocardiography, CMME, and 2D speckle tracking echocardiography were measured at the baseline (BL), after intravenous infusion of milrinone (MIL, n = 10), and after the infusion of hydroxyethyl starch (HES, n = 10). Left ventricular IVPD and IVPG were calculated from color M-mode images and categorized into total, basal, mid-to-apical, mid, and apical parts, and the percentage of the corresponding part was calculated. In comparison to the BL, the ejection fraction, mid-to-apical IVPG, mid IVPG, and apical IVPD were significantly increased after MIL administration (p < 0.05); meanwhile, the end-diastolic volume, E-wave velocity, total IVPD, and basal IVPD were significantly increased with the administration of HES (p < 0.05). The increase in mid-to-apical IVPD, mid IVPD, and apical IVPD indicated increased relaxation. A significant increase in basal IVPD reflected volume overloading by HES. CMME-derived IVPD and IVPG are useful tools for the evaluation of various loading conditions in rats. The approach used in this study provides a model for continuous data acquisition in chronic cardiac disease models without drug testing. Full article
(This article belongs to the Special Issue Trends and Novelties in Cardiovascular Imaging)
Show Figures

Figure 1

12 pages, 1428 KiB  
Article
The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs
by Katsuhiro Matsuura, Kenjirou Shiraishi, Ahmed S. Mandour, Kotomi Sato, Kazumi Shimada, Seijirow Goya, Tomohiko Yoshida, Pitipat Kitpipatkun, Lina Hamabe, Akiko Uemura, Zeki Yilmaz, Mayumi Ifuku, Takeshi Iso, Ken Takahashi and Ryou Tanaka
Animals 2021, 11(4), 1122; https://doi.org/10.3390/ani11041122 - 14 Apr 2021
Cited by 11 | Viewed by 3407
Abstract
Early detection of doxorubicin (DXR)-induced cardiomyopathy (DXR-ICM) is crucial to improve cancer patient outcomes and survival. In recent years, the intraventricular pressure gradient (IVPG) has been a breakthrough as a sensitive index to assess cardiac function. This study aimed to evaluate the usefulness [...] Read more.
Early detection of doxorubicin (DXR)-induced cardiomyopathy (DXR-ICM) is crucial to improve cancer patient outcomes and survival. In recent years, the intraventricular pressure gradient (IVPG) has been a breakthrough as a sensitive index to assess cardiac function. This study aimed to evaluate the usefulness of IVPG for the early detection of chemotherapy-related cardiac dysfunction. For this purpose, six dogs underwent conventional, speckle tracking, and color M-mode echocardiography concomitantly with pressure-and-volume analysis by conductance catheter. The cardiac function measurements were assessed before DXR administration (baseline, Pre), at the end of treatment protocol (Post), and at 1.5 years follow-up (Post2). The result showed a significant reduction in the left ventricular end-systolic pressure-volume (Emax: 4.4 ± 0.7, 6.1 ± 1.6 vs. 8.4 ± 0.8 mmHg/mL), total-IVPG (0.59 ± 0.12, 0.62 ± 0.15 vs. 0.86 ± 0.12 mmHg), and mid-IVPG (0.28 ± 0.12, 0.31 ± 0.11 vs. 0.48 ± 0.08 mmHg), respectively in Post2 and Post compared with the baseline (p < 0.05). Mid-to-apical IVPG was also reduced in Post2 compared with the baseline (0.29 ± 0.13 vs. 0.51 ± 0.11). Meanwhile, the fraction shortening, ejection fraction, and longitudinal strain revealed no change between groups. Total and mid-IVPG were significantly correlated with Emax (R = 0.49; p < 0.05, both) but only mid-IVPG was a predictor for Emax (R2 = 0.238, p = 0.040). In conclusion, this study revealed that impairment of contractility was the initial changes observed with DXR-ICM in dogs and only IVPG could noninvasively detect subclinical alterations in cardiac function. Color M-mode echocardiography-derived IVPG could be a potential marker for the early detection of doxorubicin cardiomyopathy. Full article
(This article belongs to the Special Issue Early Detection of Heart Failure in Animals)
Show Figures

Figure 1

Back to TopTop