Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = collective atomic recoil lasing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1390 KiB  
Tutorial
Classical and Quantum Collective Recoil Lasing: A Tutorial
by Nicola Piovella, Angel Tarramera Gisbert and Gordon R. M. Robb
Atoms 2021, 9(3), 40; https://doi.org/10.3390/atoms9030040 - 6 Jul 2021
Cited by 1 | Viewed by 3012
Abstract
Collective atomic recoil lasing (CARL) is a process during which an ensemble of cold atoms, driven by a far-detuned laser beam, spontaneously organize themselves in periodic structures on the scale of the optical wavelength. The principle was envisaged by R. Bonifacio in 1994 [...] Read more.
Collective atomic recoil lasing (CARL) is a process during which an ensemble of cold atoms, driven by a far-detuned laser beam, spontaneously organize themselves in periodic structures on the scale of the optical wavelength. The principle was envisaged by R. Bonifacio in 1994 and, ten years later, observed in a series of experiments in Tübingen by C. Zimmermann and colleagues. Here, we review the basic model of CARL in the classical and in the quantum regime. Full article
(This article belongs to the Special Issue Collective Atomic and Free-Electron Lasing)
Show Figures

Figure 1

20 pages, 10570 KiB  
Article
Multimode Collective Atomic Recoil Lasing in Free Space
by Angel T. Gisbert and Nicola Piovella
Atoms 2020, 8(4), 93; https://doi.org/10.3390/atoms8040093 - 10 Dec 2020
Cited by 3 | Viewed by 3361
Abstract
Cold atomic clouds in collective atomic recoil lasing are usually confined by an optical cavity, which forces the light-scattering to befall in the mode fixed by the resonator. Here we consider the system to be in free space, which leads into a vacuum [...] Read more.
Cold atomic clouds in collective atomic recoil lasing are usually confined by an optical cavity, which forces the light-scattering to befall in the mode fixed by the resonator. Here we consider the system to be in free space, which leads into a vacuum multimode collective scattering. We show that the presence of an optical cavity is not always necessary to achieve coherent collective emission by the atomic ensemble and that a preferred scattering path arises along the major axis of the atomic cloud. We derive a full vectorial model for multimode collective atomic recoil lasing in free space. Such a model consists of multi-particle equations capable of describing the motion of each atom in a 2D/3D cloud. These equations are numerically solved by means of molecular dynamic algorithms, usually employed in other scientific fields. The numerical results show that both atomic density and collective scattering patterns are applicable to the cloud’s orientation and shape and to the polarization of the incident light. Full article
(This article belongs to the Special Issue Collective Atomic and Free-Electron Lasing)
Show Figures

Figure 1

14 pages, 497 KiB  
Article
Two-Photon Collective Atomic Recoil Lasing
by James A. McKelvie and Gordon R.M. Robb
Atoms 2015, 3(4), 495-508; https://doi.org/10.3390/atoms3040495 - 20 Nov 2015
Viewed by 4525
Abstract
We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL) instabilities in differentregimes of internal atomic excitation and compare to [...] Read more.
We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL) instabilities in differentregimes of internal atomic excitation and compare to previous studies of the CARL instabilityinvolving two-level atoms. In the case of two-level atoms, the CARL instability is quenchedat high pump rates with significant atomic excitation by saturation of the (one-photon)coherence, which produces the optical forces responsible for the instability and rapid heatingdue to high spontaneous emission rates. We show that in the two-photon CARL schemestudied here involving three-level atoms, CARL instabilities can survive at high pump rateswhen the atoms have significant excitation, due to the contributions to the optical forces frommultiple coherences and the reduction of spontaneous emission due to transitions betweenthe populated states being dipole forbidden. This two-photon CARL scheme may form thebasis of methods to increase the effective nonlinear optical response of cold atomic gases. Full article
(This article belongs to the Special Issue Cavity Quantum Electrodynamics with Ultracold Atoms)
Show Figures

Figure 1

12 pages, 2075 KiB  
Article
Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil
by Samanta Piano and Gerardo Adesso
Entropy 2013, 15(5), 1875-1886; https://doi.org/10.3390/e15051875 - 17 May 2013
Cited by 6 | Viewed by 6935
Abstract
We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper [...] Read more.
We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper. Full article
(This article belongs to the Special Issue Quantum Information 2012)
Show Figures

Figure 1

Back to TopTop