Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = coated urea prills

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3166 KiB  
Article
Slow-Release Urea Prills Developed Using Organic and Inorganic Blends in Fluidized Bed Coater and Their Effect on Spinach Productivity
by Bilal Beig, Muhammad Bilal Khan Niazi, Zaib Jahan, Erum Pervaiz, Ghulam Abbas Shah, Midrar Ul Haq, Mazhar Iqbal Zafar and Munir Zia
Sustainability 2020, 12(15), 5944; https://doi.org/10.3390/su12155944 - 23 Jul 2020
Cited by 44 | Viewed by 7065
Abstract
The application of urea-based fertilizers in developing countries has gained significant momentum over time. urea usage is to meet demand and supply gap of food resources as world population is increasing at a fast pace. urea contains largest content of nitrogen (46%) among [...] Read more.
The application of urea-based fertilizers in developing countries has gained significant momentum over time. urea usage is to meet demand and supply gap of food resources as world population is increasing at a fast pace. urea contains largest content of nitrogen (46%) among all the solid nitrogenous fertilizers. However, main drawback of urea is its higher dissolution rate. After soil application, most of urea nitrogen is lost through a leaching, runoff, nitrification-denitrification and ammonia volatilization. To tackle urea related environmental pollution, development of slow-release urea fertilizer is a need of the hour and this would also increase product use efficiency in terms of crop productivity and its N uptake. We studied the usage of polymeric materials in combination with inorganic substances like sulfur and plaster of Paris as effective and biodegradable coating substances for urea prills. For coating on urea prills, fluidized bed coater was used whereas paraffin wax and molasses were used as binding agents. The urea was coated with four different formulations, i.e., C-1: PVA 5% + plaster of Paris 10% + sulfur 5% + paraffin wax 2%, C-2: PVA 5% + starch 10% + sulfur 5% + paraffin wax 2%, C-3: gelatin 5% + plaster of Paris 10% + sulfur 5% + paraffin wax 2% and C-4: PVA 5% + starch 10% + sulfur 5% + paraffin wax 2.5% + molasses 2.5%. Each formulation along with uncoated urea prills (C-0) were evaluated for characterization and N release kinetics. All the formulations along with uncoated urea were applied to spinach crop in pot experiment. A control (No N: untreated) was also kept. Spinach biomass yield and N uptake were determined. The formulation C-1 yielded highest urea-N release efficiency and spinach N uptake of6.87% and 1.93 g N/pot, respectively. Themodified Schwarz and Sinclair formula gave the excellent representation of release of nutrient-N from coated urea prills. It is concluded that coating urea prills with organic and inorganic blends is better option to slow down N release kinetics and improve spinach productivity. Therefore, by using coated fertilizers, farmers can improve agro-environmental value of urea, worldwide. Full article
(This article belongs to the Special Issue Sustainable Conversion of Renewable Energy Sources)
Show Figures

Graphical abstract

13 pages, 614 KiB  
Article
Nitrogen Recovery and Loss from Kentucky Bluegrass Fertilized by Conventional or Enhanced-Efficiency Urea Granules
by Maxim J. Schlossberg, Benjamin A. McGraw, Ryan L. Sebring and Kyle R. Hivner
Agronomy 2018, 8(8), 144; https://doi.org/10.3390/agronomy8080144 - 11 Aug 2018
Cited by 10 | Viewed by 6315
Abstract
Easy handling and low unit N cost make prilled urea (46-0-0) a popular fertilizer. While incomplete recovery of granular urea applications by turfgrass is documented, field evaluations of NH3 volatilization mitigation by coatings or bioinhibitor efficiency enhancements are limited. Meanwhile, NH3 [...] Read more.
Easy handling and low unit N cost make prilled urea (46-0-0) a popular fertilizer. While incomplete recovery of granular urea applications by turfgrass is documented, field evaluations of NH3 volatilization mitigation by coatings or bioinhibitor efficiency enhancements are limited. Meanwhile, NH3 emissions reduce air quality and contribute to nutrient loading of water resources. Our objectives were to quantify 3- and 6-d ammonia emission and 9-week turfgrass recovery of unincorporated granular fertilizer application to turfgrass. In 2014 and 2015, commercial urea-N fertilizers were broadcast over a mature Kentucky bluegrass (Poa pratensis L. ‘Midnight’) lawn at 43 kg ha−1. Treatments included conventional urea and three enhanced-efficiency fertilizers; a blended fertilizer with 25% of its urea-N supplanted by polymer- and polymer-/sulfur-coated prills, or two stabilized urea fertilizers both amended by N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiamide (DCD) inhibitors. Using a 51% ‘trapping-efficiency’ flux chamber system under the field conditions described, 23.1 or 33.5% of the conventional urea-N was lost as NH3 over the respective 3- or 6-d period following application. Alternatively, dual amendment by NBPT and DCD resulted in approximately 10.3 or 19.6% NH3-N loss over the respective 3- or 6-d periods, and greater fertilizer-N recovery by the turfgrass over the 9-week experiments. Full article
Show Figures

Figure 1

Back to TopTop