As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of
[...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways.
Full article