Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cliff behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 26594 KB  
Article
Dipping Tidal Notch (DTN): Exposed vs. Sheltered Morphometry
by Stefano Furlani, Mauro Agate, Eleonora de Sabata, Renato Chemello, Valeria Vaccher, Giulia Visconti and Fabrizio Antonioli
Geosciences 2024, 14(6), 157; https://doi.org/10.3390/geosciences14060157 - 6 Jun 2024
Cited by 1 | Viewed by 1574
Abstract
Tidal notches, long regarded as reliable indicators of mean sea level, have been extensively studied along carbonate coasts in the central Mediterranean Sea. Previous studies revealed a correlation between the genesis of tidal notches and tidal range, lithology, cliff foot depth, and wave [...] Read more.
Tidal notches, long regarded as reliable indicators of mean sea level, have been extensively studied along carbonate coasts in the central Mediterranean Sea. Previous studies revealed a correlation between the genesis of tidal notches and tidal range, lithology, cliff foot depth, and wave energy. In the 2020 Geoswim campaigns at Lampedusa, the southernmost island of the Pelagie archipelago (Italy), and in Gozo Island (Malta), ‘anomalous’ tidal notches were identified. Unlike normal notches observed elsewhere, those in Lampedusa’s southern bays exhibited a particular behaviour—constantly deepening in the inner part of the bays, reaching a maximum depth of approximately 30 cm below sea level and narrowing inwards. Similar phenomena were previously observed near Marseille (France). As confirmed by the literature, all these areas are tectonically stable. Time-lapse images, alongside measurements of morphometric parameters, were collected during the survey. Our hypothesis indicates that a combination of marine factors influenced by local marine conditions driven by the local morphology of the small bays exposed to southern quadrants contribute to the formation of these unique landforms. The latter manifests higher lowering erosion rates slightly below the mean sea level in sheltered areas, challenging conventional notions about tidal notch formation. Full article
Show Figures

Figure 1

30 pages, 9291 KB  
Article
Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt
by Rodrigo Alcaíno-Olivares, Martin Ziegler, Susanne Bickel, Hesham Ismaiel, Kerry Leith and Matthew Perras
Geotechnics 2022, 2(4), 825-854; https://doi.org/10.3390/geotechnics2040040 - 26 Sep 2022
Cited by 3 | Viewed by 4386
Abstract
The Thebes Limestone Formation of Lower Eocene age is one of the most extensive rock units in Egypt. It is of importance to the apogee of the ancient Egyptian civilization, particularly in Luxor (South-Central Egypt), where the rock formation hosts the Theban Necropolis, [...] Read more.
The Thebes Limestone Formation of Lower Eocene age is one of the most extensive rock units in Egypt. It is of importance to the apogee of the ancient Egyptian civilization, particularly in Luxor (South-Central Egypt), where the rock formation hosts the Theban Necropolis, a group of funerary chambers and temples from the New Kingdom Egyptian era (3500–3000 BP). In this work, we investigated the petrophysical and rock mechanical properties (e.g., rock strength, critical crack stress thresholds) through laboratory tests on eleven rock blocks collected from one area within the Theban Necropolis known as the Valley of the Kings (KV). The blocks belong to Member I of the Thebes Limestone Formation, including six blocks of marly limestone, three blocks of micritic limestone, one block of argillaceous limestone from the Upper Esna Shale Formation, and one block of silicified limestone of unknown origin. Special attention was given to the orientation of bedding planes in the samples: tests were conducted in parallel (PA) and perpendicular (PE) configurations with respect to bedding planes. We found that the marly limestone had an average unconfined compressive strength (UCS) of 30 MPa and 39 MPa for the PA and PE tests, respectively. Similarly, the micritic limestone tests showed an average UCS of 24 MPa for the PA orientation and 58 MPa for the PE orientation. The critical crack thresholds were the first ever reported for Member I, as measured with strain gauge readings. The average crack initiation (CI) stress thresholds for the marly limestone (PA: 14 MPa) and the micritic limestone (PA: 11 MPa; PE: 24 MPa) fall within the typical ratio of CI to UCS (0.36–0.52). The micritic limestone had an average Young’s modulus (E) of 19.5 GPa and 10.3 GPa for PA and PE, respectively. The Poisson’s ratios were 0.2 for PA and 0.1 for PE on average. Both marly and micritic limestone can be characterised by a transverse isotropic strength behaviour with respect to bedding planes. The failure strength for intact anisotropic rocks depends on the orientation of the applied force, which must be considered when assessing the stability of tombs and cliffs in the KV and will be used to understand and improve the preservation of this UNESCO World Heritage site. Full article
Show Figures

Figure 1

26 pages, 24806 KB  
Article
Water Balance of a Small Island Experiencing Climate Change
by Justin Hughes, Cuan Petheram, Andrew Taylor, Matthias Raiber, Phil Davies and Shaun Levick
Water 2022, 14(11), 1771; https://doi.org/10.3390/w14111771 - 31 May 2022
Cited by 13 | Viewed by 5203
Abstract
Small islands provide challenges to hydrological investigation, both in terms of the physical environment and available resources for hydrological monitoring. Furthermore, small islands are generally more vulnerable to natural disasters and water shortages for resident populations. Norfolk Island in the South–west Pacific, is [...] Read more.
Small islands provide challenges to hydrological investigation, both in terms of the physical environment and available resources for hydrological monitoring. Furthermore, small islands are generally more vulnerable to natural disasters and water shortages for resident populations. Norfolk Island in the South–west Pacific, is typical in these respects, and recent water shortages have highlighted the lack of hydrological knowledge required to make informed decisions regarding water supply. Accordingly, a campaign of field measurements and analysis was conducted on Norfolk Island in the 2019–2020 period and these were compared to data from the 1970’s and 1980’s along with climate records to provide some insight into the behaviour and changes to the hydrology of the island over the last 50 years. Data indicates that a decline in rainfall across the 50 year water balance period (13%) combined with increased potential evapo-transpiration and changes to land cover have reduced recharge by 27%. Reduced recharge resulted in a significant decline in the groundwater potentiometric surface and runoff (reduced by around 57%). Examination of the water balance indicates that the majority (70–80%) of recharge across the 50 year period discharges to the ocean via cliff or submarine discharge. Full article
(This article belongs to the Special Issue Integrated Water Assessment and Management under Climate Change)
Show Figures

Figure 1

13 pages, 61443 KB  
Article
An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff
by Marco Loche, Gianvito Scaringi, Jan Blahůt, Maria Teresa Melis, Antonio Funedda, Stefania Da Pelo, Ivan Erbì, Giacomo Deiana, Mattia Alessio Meloni and Fabrizio Cocco
Remote Sens. 2021, 13(7), 1265; https://doi.org/10.3390/rs13071265 - 26 Mar 2021
Cited by 21 | Viewed by 5778
Abstract
The mechanical strength is a fundamental characteristic of rock masses that can be empirically related to a number of properties and to the likelihood of instability phenomena. Direct field acquisition of mechanical information on tall cliffs, however, is challenging, particularly in coastal and [...] Read more.
The mechanical strength is a fundamental characteristic of rock masses that can be empirically related to a number of properties and to the likelihood of instability phenomena. Direct field acquisition of mechanical information on tall cliffs, however, is challenging, particularly in coastal and alpine environments. Here, we propose a method to evaluate the compressive strength of rock blocks by monitoring their thermal behaviour over a 24-h period by infrared thermography. Using a drone-mounted thermal camera and a Schmidt (rebound) hammer, we surveyed granitoid and aphanitic blocks in a coastal cliff in south-east Sardinia, Italy. We observed a strong correlation between a simple cooling index, evaluated in the hours succeeding the temperature peak, and strength values estimated from rebound hammer test results. We also noticed different heating-cooling patterns in relation to the nature and structure of the rock blocks and to the size of the fractures. Although further validation is warranted in different morpho-lithological settings, we believe the proposed method may prove a valid tool for the characterisation of non-directly accessible rock faces, and may serve as a basis for the formulation, calibration, and validation of thermo-hydro-mechanical constitutive models. Full article
(This article belongs to the Special Issue UAV Photogrammetry for Environmental Monitoring)
Show Figures

Figure 1

10 pages, 3011 KB  
Article
Sustainable Improvement of Zeolitic Pyroclastic Soils for the Preservation of Historical Sites
by Manuela Cecconi, Costanza Cambi, Stefano Carrisi, Dimitri Deneele, Enza Vitale and Giacomo Russo
Appl. Sci. 2020, 10(3), 899; https://doi.org/10.3390/app10030899 - 30 Jan 2020
Cited by 6 | Viewed by 2284
Abstract
Climate changes are inducing a modification of environmental loads on historical sites, requiring new actions towards their conservation. In the paper, the results of an experimental work on sustainable improvement of a pyroclastic soil belonging to the Orvieto cliff (Central Italy) have been [...] Read more.
Climate changes are inducing a modification of environmental loads on historical sites, requiring new actions towards their conservation. In the paper, the results of an experimental work on sustainable improvement of a pyroclastic soil belonging to the Orvieto cliff (Central Italy) have been investigated in the perspective of its preservation from degradation. The slightly coherent facies of Orvieto Ignimbrite (pozzolana) was treated with hydrated lime and the subsequent chemo-physical evolution was investigated by means of a multi-scale analysis. The beneficial effects obtained from the improvement in terms of mechanical behaviour were interpreted and correlated to the chemo-physical evolution of the system. Microstructural analyses, X-ray diffractometry, thermo-gravimetric analyses (DTG), SEM observations, mercury intrusion porosimetry performed on raw and treated samples, showed that the pozzolanic reactions develop since the very beginning in the system and that the observed mechanical improvement of the treated soil is mainly due to the formation of calcium silicate hydrates (CSH) and calcium aluminate hydrates (CAH). In the paper, the mechanical improvement is put in evidence by comparing the results of oedometer tests performed on both raw and treated samples. Full article
(This article belongs to the Special Issue New Trends of Sustainability in Civil Engineering and Architecture)
Show Figures

Figure 1

22 pages, 11552 KB  
Article
A Method to Extract Measurable Indicators of Coastal Cliff Erosion from Topographical Cliff and Beach Profiles: Application to North Norfolk and Suffolk, East England, UK
by Pablo Muñoz López, Andrés Payo, Michael A. Ellis, Francisco Criado-Aldeanueva and Gareth Owen Jenkins
J. Mar. Sci. Eng. 2020, 8(1), 20; https://doi.org/10.3390/jmse8010020 - 2 Jan 2020
Cited by 13 | Viewed by 6144
Abstract
Recession of coastal cliffs (bluffs) is a significant problem globally, as around 80% of Earth’s coastlines are classified as sea cliffs. It has long been recognised that beaches control wave energy dissipation on the foreshore and, as a result, can provide protection from [...] Read more.
Recession of coastal cliffs (bluffs) is a significant problem globally, as around 80% of Earth’s coastlines are classified as sea cliffs. It has long been recognised that beaches control wave energy dissipation on the foreshore and, as a result, can provide protection from shoreline and cliff erosion. However, there have been few studies that have quantified the relationship between beach levels and cliff recession rates. One of the few quantitative studies has shown that there is a measurable relationship between the beach thickness (or beach wedge area (BWA) as a proxy for beach thickness) and the annual cliff top recession rate along the undefended coast of North Norfolk and Suffolk in eastern England, United Kingdom (UK). Additionally, previous studies also found that for profiles with low BWA, the annual cliff top recession rate frequency distribution follows a bimodal distribution. This observation suggests that as BWA increases, not only does cliff top recession rate become lower, but also more predictable, which has important implications for coastal stakeholders particularly for planning purposes at decadal and longer time scales. In this study, we have addressed some of the limitations of the previous analysis to make it more transferable to other study sites and applicable to longer time scales. In particular, we have automatised the extraction of cliff tops, toe locations, and BWA from elevation profiles. Most importantly, we have verified the basic assumption of space-for-time substitution in three different ways: (1) Extending the number or years analysed in a previous study from 11 to 24 years, (2) extending the number of locations at which cliff top recession rate and BWA are calculated, and (3) exploring the assumption of surface material remaining unchanged over time by using innovative 3D subsurface modelling. The present study contributes to our understanding of a poorly known aspect of cliff–beach interaction and outlines a quantitative approach that allows for simple analysis of widely available topographical elevation profiles, enabling the extraction of measurable indicators of coastal erosion. Full article
Show Figures

Figure 1

Back to TopTop