Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt
Abstract
:1. Introduction
2. Rock Formations and Morphology of the Valley of the Kings
3. Sampling and Rock Description
4. Methodology
4.1. Rock Block Tests and Drilling of Rock Blocks
4.1.1. Thermal Conductivity and Volumetric Specific Heat
4.1.2. Ultrasonic Pulse Velocity Tests of Blocks (Wave Speed)
4.1.3. Coring and Preparation of Samples
4.2. Petrophysical Index Tests on Cored Samples
4.2.1. Bulk Density
4.2.2. Apparent Porosity
4.2.3. Slake Durability Index
4.2.4. Wave Velocity
4.3. Mechanical Strength Tests and Critical Crack Thresholds
4.3.1. Tensile Strength Tests
4.3.2. Uniaxial Compressive Strength (UCS) Tests with Strain Measurement
4.3.3. Critical Crack Thresholds during UCS Tests and Elastic Properties
5. Geomechanical Behaviour
5.1. Overview
5.2. Standard Geotechnical Properties
5.2.1. Thermal Conductivity and Volumetric Specific Heat
5.2.2. P-Wave Velocity Measured by Direct and Indirect Methods in Blocks
5.2.3. Apparent Porosity
5.2.4. Bulk Density
5.2.5. Slake Durability Index
5.2.6. Wave Velocity of Cored Samples
5.2.7. Indirect Tensile StrengthAll indirect tensile strength
5.2.8. Unconfined Compression Tests, Young’s Modulus and Poisson’s Ratio
5.3. Comparison of Geotechnical Properties with Existing Data
5.3.1. Analysis of Thermal Conductivity and Specific Heat Results
5.3.2. Analysis of P-Wave Speed in Blocks
5.3.3. Analysis of Apparent Porosity
5.3.4. Analysis of Bulk Density
5.3.5. Analysis of Slake Durability Index
5.3.6. Analysis of Wave Velocity of Cored Samples
5.3.7. Analysis of Indirect Tensile Strength (Brazilian Test Results)
5.3.8. Analysis of Unconfined Compressive Strength
5.3.9. Analysis of Young’s Modulus and Poisson’s Ratio
5.4. Analysis of Strain Measurement and Critical Crack Thresholds
5.4.1. Maximum Deformation at the Peak Strength
5.4.2. Critical Crack Thresholds from UCS Tests
5.4.3. Comparison of Crack Initiation Threshold to Literature Values
6. Discussion
6.1. Quality of Reported Data and Overall Results
6.2. Petrophysical and Mechanical Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Argillaceous limestone |
ASTM | American Society for Testing and Materials |
AVG. | Average |
BSI | British Standard Institution |
BTS | Brazilian tensile strength |
CC | Crack closure threshold |
CI | Crack initiation threshold |
CD | Crack damage threshold |
CV | Coefficient of variation |
DIR | Direct transmission |
E | Young’s modulus |
Id | Slake-durability index |
IND | Indirect transmission |
ISRM | International Society of Rock Mechanics |
KV | Valley of the Kings |
KV42 | Tomb KV42 in the Valley of the Kings |
MA | Marly limestone |
MI | Micritic limestone |
PA | Orientation parallel to rock bedding |
PE | Orientation perpendicular to rock bedding |
SIL | Silicified limestone |
Vp | Ultrasonic measured compression (primary) wave velocity |
Vs | Ultrasonic measured shear wave velocity |
UCS | Uniaxial compressive strength |
υ | Poisson’s ratio |
ε | Strain (subscript: a—axial, l—lateral, v—volumetric) |
σ | Stress (subscript: t—tensile) |
Appendix A
References
- Theban Mapping Project. 2005. Available online: www.chnm.gmu.edu (accessed on 19 January 2019).
- Hemeda, S. Geotechnical modelling of the climate change impact on world heritage properties in Alexandria, Egypt. Herit Sci. 2021, 9, 73. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Bakun-Mazor, D.; Hatzor, Y.H.; Glaser, S.D.; Santamarina, J.C. Thermally vs. seismically induced block displacements in Masada rock slopes. Int. J. Rock Mech. Min. Sci. 2013, 61, 196–211. [Google Scholar]
- Rutherford, J.B. Geotechnical causes of ancient tomb damage: Valley of the Kings, Egypt. In Proceedings of the Symposium on Geotechnical Aspects of Restoration Works on Infrastructure and Monuments, Bangkok, Thailand, 3–6 December 1988. [Google Scholar]
- Hamada, M.; Aydan, O.; Tano, H. A report on environmental and Rock Mechanical Investigations for the Conservation Project in the Royal Tomb of Amenophis III. In Conservation of the Wall Paintings in the Royal Tomb of Amenophis III–First and Second Phases Report; Waseda University: Tokyo, Japan, 2004; pp. 83–138. [Google Scholar]
- Tawfik, H.A.; Zahran, E.K.; Abdel-Hameed, A.T.; Maejima, W. Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt. Arab. J. Geosci. 2011, 4, 517–534. [Google Scholar] [CrossRef]
- Dupuis, C.; Aubry, M.P.; King, C.; Knox, R.W.B.; Berggren, W.A.; Youssef, M.; Galal, W.F.; Roche, M. Genesis and geometry of tilted blocks in the Theban Hills, near Luxor (Upper Egypt). J. Afr. Earth Sci. 2011, 61, 245–267. [Google Scholar] [CrossRef]
- Aubry, M.P.; Berggren, W.A.; Dupuis, C.; Ghaly, H.; Ward, D.; King, C.; Knox, R.W.O.B.; Ouda, K.; Youssef, M.; Galal, W.F. Pharaonic necrostratigraphy: A review of geological and archaeological studies in the Theban Necropolis, Luxor, West Bank, Egypt. Terra Nova 2009, 21, 237–256. [Google Scholar] [CrossRef]
- Bardají, T.; Martínez-Graña, A.; Sánchez-Moral, S.; Pethen, H.; García-González, D.; Cuezva, S.; Cañaveras, J.C.; Jiménez-Higueras, A. Geomorphology of Dra Abu el-Naga (Egypt): The basis of the funerary sacred landscape. J. Afr. Earth Sci. 2017, 131, 233–250. [Google Scholar] [CrossRef]
- Ziegler, M.; Colldeweih, R.; Wolter, A.; Loprieno-Gnirs, A. Rock mass quality and preliminary analysis of the stability of ancient rock-cut Theban tombs at Sheikh ‘Abd el-Qurna, Egypt. Bull. Eng. Geol. Environ. 2019, 78, 6179–6205. [Google Scholar] [CrossRef]
- The Kings’ Valley Project. 2017. Available online: www.kv64.ch (accessed on 20 April 2020).
- Alcaíno-Olivares, R.; Perras, M.A.; Ziegler, M.; Leith, K. Thermo-Mechanical Cliff Stability at Tomb KV42 in the Valley of the Kings, Egypt. In WLF 2020: Understanding and Reducing Landslide Disaster Risk; Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K., Eds.; ICL Contribution to Landslide Disaster Risk Reduction; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lukovic, M.; Ziegler, M.; Aaron, J.; Perras, M.A. Rockfall susceptibility and runout in the Valley of the Kings. In Natural Hazards; Springer: Berlin, Germany, 2021; pp. 1–35. [Google Scholar]
- Said, R. The Geology of Egypt; Routledge: Abingdon, UK, 1990. [Google Scholar]
- King, C.; Dupuis, C.; Aubry, M.P.; Berggren, W.A.; Robert, O.B.K.; Galal, W.F.; Baele, J.M. Anatomy of a mountain: The Thebes Limestone Formation (Lower Eocene) at Gebel Gurnah, Luxor, Nile Valley, Upper Egypt. J. Afr. Earth Sci. 2017, 136, 61–108. [Google Scholar] [CrossRef]
- Lazar, J. Geologisch-Geotechnische Untursuchungen im Thebanischen Gebirge, Teil Nord, Luxor, Agypten. Master’s Thesis, University of Bern, Bern, Switzerland, 1995. [Google Scholar]
- Wüst, R. Geologisch-Geotechnische Untersuchungen im Thebanischen Gebirge, Teil Sud, Luxor, Agypten. Master’s Thesis, University of Bern, Bern, Switzerland, 1995. [Google Scholar]
- Wüst, R.A.; Schlüchter, C. The origin of soluble salts in rocks of the Thebes mountains, Egypt: The damage potential to ancient Egyptian wall art. J. Archaeol. Sci. 2000, 27, 1161–1172. [Google Scholar] [CrossRef]
- Hemeda, S. Engineering failure analysis and design of support system for ancient Egyptian monuments in Valley of the Kings, Luxor, Egypt. Geoenviron. Disasters 2018, 5, 126–158. [Google Scholar] [CrossRef]
- Wüst, R.A.; McLane, J. Rock deterioration in the royal tomb of Seti I, Valley of the Kings, Luxor, Egypt. Eng. Geol. 2000, 58, 163–190. [Google Scholar] [CrossRef]
- Maissen, J. The Fractured Rock Cliff above KV42, Valley of the Kings, Egypt. Master’s Thesis, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland, 2019. [Google Scholar]
- Hemeda, S. Geo-environmental monitoring and 3D finite elements stability analysis for site investigation of underground monuments. Horemheb tomb (KV57), Luxor, Egypt. Herit. Sci. 2021, 9, 17. [Google Scholar] [CrossRef]
- Aydan, Ö.; Tano, H.; Geniş, M.; Sakamoto, I.; Hamada, M.; Yoshimura, S. Environmental and rock mechanics investigations for the restoration of the tomb of Amenophis III. In Proceedings of the Japan–Egypt Joint Symposium New Horizons in Geotechnical and Geoenvironmental Engineering, Tanta, Egypt, 15–17 September 2018. [Google Scholar]
- Dziedzic, T.; Michiewicz, M. Research of the Theban limestone: The case of Temple of Hatshepsut in Deir el-Bahari. E3S Web Conf. 2018, 49, 1–9. [Google Scholar] [CrossRef]
- Abdallah, T.; Helal, H. Risk evaluation of rock mass sliding in El-Deir El-Bahary valley, Luxor, Egypt. Bull. Int. Assoc. Eng. Geol. 1990, 42, 3–9. [Google Scholar] [CrossRef]
- Ayman, H. Re-Excavation of Seti First Tomb, Kv17, Luxor, Egypt. Int. J. Conserv. Sci. 2013, 4, 433–446. [Google Scholar]
- Abdellah, M.Y.; Gelany, A.F.; Mohamed, A.F.; Khoshaim, A.B. Protection of limestone coated with different polymeric materials. Am. J. Mech. Eng 2017, 5, 51–57. [Google Scholar] [CrossRef]
- Mohamed, A.E.E.A.; El-Hadidy, M.; Deif, A.; Elenean, K.A. Seismic hazard studies in Egypt. NRIAG J. Astron. Geophys. 2012, 1, 119–140. [Google Scholar] [CrossRef]
- Conoco, Inc. Stratigraphic Lexicon and Explanatory Notes to the Geological Map of Egypt, 1: 500000; The Egyptian petroleum Co-operation: Cairo, Egypt, 1986. [Google Scholar]
- Cross, S.W. The Hydrology of the Valley of the Kings. J. Egypt. Archaeol. 2008, 94, 303–310. [Google Scholar] [CrossRef]
- Google Earth Pro. Valley of the Kings 25°44′ 24.5” N, 32°36′ 05” E, Elevation 175 m. Terrain Layer. Imagery Date 11/02/2018. 2021. Available online: http://www.earth.google.com (accessed on 15 March 2021).
- El Salam, M.E. Construction of underground works and tunnels in ancient Egypt. Tunn. Undergr. Space Technol. 2002, 17, 295–304. [Google Scholar] [CrossRef]
- Gelany, A.F.; Abu Zeid, M.M.; Abd El-Sadek, M.S.; Mansour, A.M. Evaluation of the Expansive Esna Shale and Its Role in the Deterioration of Heritage Buildings at West Bank of Luxor. J. Geosci. Environ. Prot. 2019, 7, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zou, X.; Liu, H.; Chen, T.; Suib, S.L.; Chen, D.; Xie, J.; Li, M.; Sun, F. A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics. Appl. Surf. Sci. 2019, 486, 420–430. [Google Scholar] [CrossRef]
- British Standard Institution. BS5930:2015; Code of Practice for Ground Investigations. BSI: London, UK, 2015.
- Decagon Devices Inc. KD2 Pro Thermal Properties Analyzer, Operator’s Manual; Pullman: Washington, DC, USA, 2015. [Google Scholar]
- British Standard Institution. BS1881-203:1986; Recommendation for Measurement of Velocity of Ultrasonic Pulses in Concrete. BSI: London, UK, 1986.
- International Society of Rock Mechanics. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- International Society of Rock Mechanics. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. 1979, 16, 138–140. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM D4543-08; Standard Practice for Preparing Rock Core Samples and Determining Dimensional and Shape Tolerances. ASTM: West Conshohocken, PA, USA, 2008.
- American Society for Testing and Materials. ASTM D2216-10; Standard Test Methods for Laboratory Determination of Water (Moisture) Contents of Soil and Rock by Mass. ASTM: West Conshohocken, PA, USA, 2010.
- International Society of Rock Mechanics. Suggested methods for determining water content, porosity, absorption and related properties and swelling and slake-durability index properties. Int. J. Rock Mech. Min. Sci. 1977, 16, 143–156. [Google Scholar]
- Franklin, J.A.; Chandra, R. The slake-durability test. Int. J. Rock Mech. Min. Sci. Geomech. 1972, 9, 325–328. [Google Scholar] [CrossRef]
- Dinh, Q.; Konietzky, H.; Herbest, M. Brazilian tensile strength tests on some anisotropic rocks. Int. J. Rock Mech. Rock Sci. 2013, 58, 1–7. [Google Scholar]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 3, 643–659. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W., Jr.; Scholz, C.H. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Brittle fracture in compression. Int. J. Fract. 1974, 10, 525–536. [Google Scholar] [CrossRef]
- Stacey, T.R. A simple extension strain criterion for fracture of brittle rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 469–474. [Google Scholar] [CrossRef]
- Diederichs, M.S. The 2003 CGS Geocolloquium address: Damage and spalling prediction criteria for deep tunnelling. Can. Geotech. J. 2007, 44, 1082–1116. [Google Scholar] [CrossRef]
- Ghazvinian, E. Modelling and Testing Strategies for Brittle Fracture Simulation in Crystalline Rock Samples. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2010. [Google Scholar]
- Nicksiar, M. Effective Parameters on Crack Initiation Stress in Low Porosity Rocks. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2013. [Google Scholar]
- Perras, M.A.; Diederichs, M.S. A review of the tensile strength of rock: Concepts and testing. Geotech. Geol Eng. 2014, 32, 525–546. [Google Scholar] [CrossRef]
- Damjanac, B.; Fairhurst, C. Evidence for a long-term strength threshold in crystalline rock. Rock Mech. Rock Eng. 2010, 43, 513–531. [Google Scholar] [CrossRef]
- Leith, K.; Moore, J.R.; Amann, F.; Loew, S. In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock. J. Geophys. Res. Solid Earth 2014, 119, 594–615. [Google Scholar] [CrossRef]
- Robertson, G.E. Thermal properties of rocks. In Geological Survey Editorial Standards and Stratigraphic Nomenclature; United States Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Çanakci, H.; Demirboğa, R.; Karakoç, M.B.; Şirin, O. Thermal conductivity of limestone from Gaziantep (Turkey). Build. Environ. 2007, 42, 1777–1782. [Google Scholar] [CrossRef]
- Kappelmeyer, O.; Haenel, R. Geothermics with Special Reference to Application; Geoexploration Monographs Series; Gebrueder Borntraeger: Berlin, Germany, 1974. [Google Scholar]
- Homuth, S.; Götz, A.E.; Sass, I. Physical Properties of the geothermal carbonate reservoirs of the Molasse Basin, Germany—Outcrop Analogue vs. Reservoir Data. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Manger, G.E. Porosity and Bulk Density of Sedimentary Rocks; United States Government Printing Office: Washington, DC, USA, 1963. [Google Scholar]
- Miščević, P.; Vlastelica, G. Durability characterization of marls from the region of Dalmatia, Croatia. Geotech. Geol. Eng. 2011, 29, 771–781. [Google Scholar] [CrossRef]
- Khalily, M.; Lashkaripour, G.R.; Ghafoori, M.; Khanehbad, M.; Dehghan, P. Durability characterization of Abderaz marly limestone in the Kopet-Dagh Basin, NE of Iran. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 50–56. [Google Scholar]
- Azimian, A.; Ajalloeian, R. Empirical correlation of physical and mechanical properties of Marly rocks with P wave velocity. Arab. J. Geosci. 2015, 8, 2069–2079. [Google Scholar] [CrossRef]
- Çiçek, F.; Deniz, İ.T.; Uçak, E.; Kandemir, S.Y. Determination of Slake Durability Index (Id) values on different shape of laminated Marl samples. Earth Environ. Sci. 2016, 44, 22006. [Google Scholar]
- Arman, H.; El, T.M.; Abdelghani, O.; Mahmoud, B.; Abu, S.M. Slake durability test on Lower Oligocene limestones from Al Ain City, United Arab Emirates. J. Earth Sci. Clim. Chang. 2016, 7, 2. [Google Scholar] [CrossRef]
- Ali, M.A.; Yang, H.S. A study of some Egyptian carbonate rocks for the building construction industry. Int. J. Min. Sci. Technol. 2014, 24, 467–470. [Google Scholar] [CrossRef]
- Ali, M.A.M.; Ahmed, H.M. Engineering characteristics of Egyptian limestone. Min. Miner. Depos. 2019, 13, 75–81. [Google Scholar] [CrossRef]
- Abdelrahman, A.S.; Ali, M.; Mahrous, A.; Draz, W.; Aly, F.A.; Moharam, M.R. Geotechnical assessment of limestone and dolomite quarries around Cairo for different purposes. J. Al-Azhar Univ. Eng. Sect. 2019, 14, 130–135. [Google Scholar] [CrossRef]
- Arnold, D. Building in Egypt: Pharaonic Stone Masonry; Oxford Press: Oxford, UK, 1991. [Google Scholar]
- Gercek, H. Poisson’s ratio values for rocks. Int. J. Rock Mech. Min. Sci. 2007, 44, 1–13. [Google Scholar] [CrossRef]
- Wen, T.; Tang, H.; Ma, J.; Wang, Y. Evaluation of methods for determining crack initiation stress under compression. Eng. Geol. 2018, 235, 81–97. [Google Scholar] [CrossRef]
- Meyer, B.J. New Objective Method for the Determination of Crack Initiation Stress Using Acoustic Emission Data. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2018. [Google Scholar]
- Peng, J.; Rong, G.; Jiang, M. Variability of crack initiation and crack damage for various rock types. Arab. J. Geosci. 2018, 11, 265. [Google Scholar] [CrossRef]
- Pepe, G.; Mineo, S.; Pappalardo, G.; Cevasco, A. Relation between crack initiation-damage stress thresholds and failure strength of intact rock. Bull. Eng. Geol. Environ. 2018, 77, 709–724. [Google Scholar] [CrossRef]
- Ündül, Ö.; Aysal, N.; ÇobanoÏglu, B.C.; Amann, F.; Perras, M. Strength, deformation, and cracking characteristics of limestones. In Proceedings of the Rock Mechanics and Rock Engineering: From the Past to the Future, Cappadocia, Turkey, 29–31 August 2016. [Google Scholar]
- Khalil, E.E. On the modelling of air flow in the tombs of the Valley of the Kings. Fluid Mech. 2017, 4, 1–20. [Google Scholar]
- Bagheripour, M.H.; Rahgozar, R.; Pashnesaz, H.; Malekinejad, M. A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock. Geomech. Eng. 2011, 3, 61–81. [Google Scholar] [CrossRef]
- Rammamurthy, T. Strength and Modulus Responses of Anisotropic Rocks. Compr. Rock Eng. 1993, 13, 313–329. [Google Scholar]
- Kwasniewski, M. Anisotropy of elasticity of rocks and its effect on the magnitude and distribution of stress around underground openings. In Proceedings of the 8th Plenary Screntific Session, International Bureau of Strata Mechanics, Essen, Germany, 22–24 June 1983; pp. 5–37. [Google Scholar]
- Sharma, P.K.; Singh, T.N. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull. Eng. Geol. Environ. 2008, 67, 17–22. [Google Scholar] [CrossRef]
- Yagiz, S. Correlation between slake durability and rock properties for some carbonate rocks. Bull. Eng. Geol. Environ. 2011, 70, 377–383. [Google Scholar] [CrossRef]
- Zhu, W.; Baud, P.; Wong, T. Micromechanics of cataclastic pore collapse in limestone. J. Geophys. Res. 2010, 115, 1–17. [Google Scholar] [CrossRef]
- Altindag, R. Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. J. South. Afr. Inst. Min. Metall. 2012, 112, 229–237. [Google Scholar]
- Xue, L.; Qin, S.; Sun, Q.; Wang, Y.; Lee, L.M.; Li, W. A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech. Rock Eng. 2014, 47, 1183–1195. [Google Scholar] [CrossRef]
- Hoek, E.; Diederichs, M.S. Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- Palchik, V. On the ratios between elastic modulus and uniaxial compressive strength of heterogeneous carbonate rocks. Rock Mech. Rock Eng. 2011, 44, 121–128. [Google Scholar] [CrossRef]
- Deere, D.U. Geological considerations. In Rock Mechanics in Engineering Practice; Stagg, K.G., Zienkiewicz, O.C., Eds.; Wiley: London, UK, 1968; pp. 1–20. [Google Scholar]
- Palmstrom, A.; Singh, R. The Deformation Modulus of Rock Masses: Comparisons between in Situ Tests and Indirect Estimates. Tunn. Undergr. Space Technol. 2001, 16, 115–131. [Google Scholar] [CrossRef]
- Li, J.; Villaescusa, E. Determination of rock mass compressive strength using critical strain theory. In Proceedings of the 40th US Rock Mechanics/Geomechanics Symposium ARMA, Anchorage, AK, USA, 25–29 June 2019. [Google Scholar]
- Woodman, J.; Ougier-Simonin, A.; Stavrou, A.; Vazaios, I.; Murphy, W.; Thomas, M.E.; Reeves, H.J. Laboratory experiments and grain based discrete element numerical simulations investigating the thermo-mechanical behaviour of sandstone. Geotech. Geol. Eng. 2021, 39, 4795–4815. [Google Scholar] [CrossRef]
- Woodman, J. Thermo-Mechanical Loading of Intact Rock and Discontinuities. Ph.D. Thesis, University of Leeds, Leeds, UK, 2020. [Google Scholar]
- Marmoni, G.M.; Fiorucci, M.; Grechi, G.; Martino, S. Modelling of thermo-mechanical effects in a rock quarry wall induced by near-surface temperature fluctuations. Int. J. Rock Mech. Min. Sci. 2020, 134, 104440. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M.; Eppes, M.C.; Lexiw, S.W.; Corbett, S.C.; Smith, J.B. Thermal influences on spontaneous rock dome exfoliation. Nat. Commun. 2018, 9, 762–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaíno -Olivares, R.; Leith, K.; Ziegler, M.; Perras, M.A. Thermo-mechanical fatigue cracking of the bedrock on an island in the Baltic Sea. In Proceedings of the GeoNiagara 2021, Niagara Falls, ON, Canada, 26–29 September 2021. [Google Scholar]
Property | Reference | Rock Type(s) | Sampling location | Type of Test | # | Avg. | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|---|---|---|---|
Rock Density (kg/cm3) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | Buoyancy in Hg | 13 | 2280 | 210 | 1950 | 2650 |
Wüst [18] | Limestone, Marl | Wadi Gabbanat El-Gouroud | Buoyancy in Hg | 8 | 2100 | 200 | 1710 | 2210 | |
Wüst and Schlüchter [19] | Marls, Member I | KV17 | Possibly from Wüst [18] | 6 | 2150 | 70 | 2050 | 2180 | |
Unit Weight (kN/m3) | Hemeda [20] | Marly limestone | KV5 | 20 | 20 | 21 | |||
Porosity (%) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | Grain ρ measured with multipycnometer | 13 | 13.4 | 8 | 1.1 | 27.5 |
Wüst [18] | Limestone and Marl | Wadi Gabbanat El-Gouroud | 8 | 19.7 | 6.5 | 14 | 34.7 | ||
Wüst and Schlüchter [19] | Marls, Member I | KV17 | 6 | 18.2 | 3.4 | 15.2 | 23.4 | ||
Apparent Porosity (%) | Hemeda [20] | Marly limestone | KV5 | 14 | 19 | ||||
Uniaxial Compressive Strength (UCS) in PE (MPa) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | UCS test | 10 | 53 | 16 | 22.8 | 68.2 |
Wüst and McLane [21] | Marl | KV17 | UCS test | 1 | 78.2 | ||||
Hemeda [20] | Marly limestone | KV5 | 6 | 7 | |||||
Maissen [22] | Micritic limestone (weathered) | Exterior KV42 | Rebound hammer | 4 | 40 | 7 | |||
Hemeda [23] | Marly limestone | KV57 | UCS test | 7 | 8.7 | 8 | 9.3 | ||
UCS in PA (MPa) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | UCS test | 7 | 35 | 10 | 16.2 | 47.8 |
Maissen [22] | Micritic limestone (weathered) | Exterior KV42 | Rebound hammer | 4 | 32 | 6 | |||
P-wave velocity (Vp) in PE (km/s) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | Transducer 100 kHz | 3 | 2.36 | 0.24 | 2.2 | 2.7 |
Maissen [22] | Micritic limestone (weathered) | Exterior KV42 | Transducer 54 kHz | 4 | 2.95 | 0.5 | |||
Hemeda [23] | Marly limestone | KV57 | ASTM 597 | 0.7 | 0.9 | ||||
Vp in PA (km/s) | Lazar [17] | Chalk, Marl | Wadi El-Machtiar | Transducer 100kHz | 3 | 3.32 | 0.05 | 3.3 | 3.4 |
Maissen [22] | Micritic limestone (weathered) | Exterior KV42 | Transducer 54 kHz | 4 | 3.15 | 0.2 | |||
S-wave velocity (Vs) in PE (km/s) | Hemeda [20] | Marly limestone | KV5 | ASTM 597 | 0.7 | 1 | |||
) (MPa) | Aydan et al. [24] | Marly limestone | WV22 | Tensile test | 4.4 | 5.1 | |||
Dziedzic and Michiewicz [25] | Marly limestone | Hatshepsut Temple | Beam test | 4 | 2.95 | 0.26 | 2.7 | 3.4 | |
Static elastic modulus, E-static (GPa) | Hamada et al. [6] | Marly limestone | KV5 | UCS tests | 10 | ||||
Aydan et al. [24] | Soft limestone | WV22 | UCS tests | 2 | 10 | ||||
Hemeda [24] | Marly limestone | KV57 | 12 | ||||||
Poisson’s ratio (ν) | Abdallah and Helal [26] | Limestone (Marly) | Hatshepsut Temple | 0.21 | |||||
Ayman [27] | Limestone (Esna Shale Fm.) | KV17 Deepest Tunnel | 0.2 | ||||||
Hemeda [20] | Marly limestone | KV5 | 0.28 | 0.30 | |||||
Hemeda [23] | Marly limestone | KV57 | 0.25 | 0.30 | |||||
Wüst and McLane [21] | Marl | KV17 | UCS test | 1 | 0.42% | ||||
Abdellah et al. [28] | Limestone (Marly) | Hatshepsut Temple | Blocks of 30 mm tested at 1 mm/min | 1 | 6% | ||||
Mohammed et al. [29] | Limestone (Marly) | Hatshepsut Temple | 1 | 2.2% |
Block | Formation | Elevation (m.a.s.l.) | Rock Unit Description |
---|---|---|---|
8 | Unknown | 220–223.5 m | Strong, massive, dark brown silicified limestone. |
4, 5, 6 | Thebes Fm.—Member I | 200–210 m | Medium strong, thinly bedded, cream, micritic limestone. Discontinuities: closely spaced, from 45° to 90° from bedding planes, smooth, tight. |
1, 2, 3 9, 10, 11 | Thebes Fm.—Member I | 120–130 m | Strong, very thinly bedded, light grey, marly limestone with manganese dendrites on shallow surfaces. Discontinuities: very closely to closely spaced, from 45° to 90° from bedding planes, smooth, tight with small amount of clay infills. |
7 | Esna Shale Fm. | 110–120 m Boundary with Thebes Fm. | Medium strong, thickly laminated, reddish brown mottled light grey argillaceous limestone. Discontinuities: closely spaced, from 90° to 70° from bedding planes, rough, tight with small amount of clay infills. |
Author | Variables and Method |
---|---|
Brace et al. [47] | Linearity of volumetric strain and axial stress |
Lajtai [48] | Inflection in trend of lateral strain and axial stress |
Stacey [49] | Linearity of volumetric strain and axial strain |
Diederichs [50] | Maximum point of Poisson’s ratio increment and logarithm of axial stress curve |
Ghazvinian [51] | Lateral stiffness increment and axial stress |
Lithology | OR | k W/mK | Sp. Heat MJ/m3K | Vpb (DIR) km/s | Vpb (IND) km/s | Id * (%) | nap * (%) | γb * kg/m3 | Vp ** km/s | Vs ** km/s | σt MPa | UCS MPa | E GPa | ν | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MA | PA (PE1) | # Samples | 5 | 5 | 6 | 6 | 5 | 49 | 3 | 3 | 6 | 3 | 2 | 2 | |
Average | 1.08 | 1.04 | 1.61 | 0.75 | 94 | 2022 | 2.98 | 1.18 | 7.4 | 30.4 | 18.5 | 0.29 | |||
Max. | 1.30 | 1.32 | 3.02 | 1.26 | 99 | 2247 | 3.41 | 1.28 | 13.2 | 40.9 | 21 | 0.17 | |||
Min. | 0.73 | 0.`64 | 0.45 | 0.52 | 85 | 1787 | 2.73 | 1.10 | 3.9 | 22.6 | 16 | 0.42 | |||
Std. Dev. | 0.19 | 0.25 | 0.89 | 0.2 | 5.55 | 134 | 0.30 | 0.07 | 3.3 | 7.7 | |||||
PE (PE2) | # Samples | 6 | 6 | 4 | 4 | 14 | 4 | ||||||||
Average | 2.49 | 1.05 | 2.14 | 1.17 | 9.2 | 39 | |||||||||
Max. | 2.98 | 2.20 | 2.40 | 1.34 | 15.3 | 50 | |||||||||
Min. | 1.80 | 0.31 | 1.89 | 0.96 | 5.6 | 27 | |||||||||
Std. Dev. | 0.41 | 0.6 | 0.19 | 0.15 | 2.6 | 10.8 | |||||||||
MI | PA (PE1) | # Samples | 3 | 3 | 3 | 3 | 3 | 14 | 47 | 5 | 5 | 4 | 3 | 2 | 2 |
Average | 0.70 | 1.47 | 2.65 | 0.73 | 96 | 18.2 | 2062 | 3.22 | 1.30 | 7.7 | 23.9 | 19.5 | 0.20 | ||
Max. | 0.86 | 2.34 | 3.35 | 0.92 | 97 | 23.9 | 2926 | 3.37 | 1.53 | 11.4 | 30.8 | 22 | 0.29 | ||
Min. | 0.52 | 1.06 | 1.14 | 0.23 | 96 | 13.0 | 1664 | 3.06 | 1.08 | 6.3 | 20 | 17 | 0.10 | ||
Std. Dev. | 0.14 | 0.50 | 0.78 | 0.2 | 0.47 | 3.4 | 174 | 0.12 | 0.16 | 2.1 | 4.9 | ||||
PE (PE2) | # Samples | 2 | 2 | 3 | 3 | 9 | 9 | 8 | 9 | 5 | 5 | ||||
Average | 0.65 | 1.62 | 1.63 | 0.73 | 2.20 | 1.02 | 7.1 | 58.3 | 10.3 | 0.10 | |||||
Max. | 0.66 | 1.87 | 2.41 | 0.99 | 2.46 | 1.34 | 8.9 | 79.9 | 21.1 | 0.14 | |||||
Min. | 0.65 | 1.36 | 1.04 | 0.34 | 2.05 | 0.78 | 5.6 | 40.9 | 2.5 | 0.08 | |||||
Std. Dev. | 0.48 | 0.2 | 0.13 | 0.18 | 1.1 | 12.1 | 6.4 | 0.02 |
Lithology | OR | k W/mK | Sp. Heat MJ/m3K | Vpb (DIR) km/s | Vpb (IND) km/s | |
---|---|---|---|---|---|---|
AR | PA (PE1) | Average | 1.08 | 1.06 | 2.55 | 1.30 |
Max. | 1.08 | 1.06 | 2.64 | 1.31 | ||
Min. | 1.07 | 1.06 | 2.46 | 1.29 | ||
Std. Dev. | 0.00 | 0.00 | 0.08 | 0.01 | ||
PE (PE2) | Average | 1.04 | 1.07 | 1.19 | 0.73 | |
Max. | 1.05 | 1.08 | 1.23 | 0.85 | ||
Min. | 1.02 | 1.06 | 1.08 | 0.64 | ||
Std. Dev. | 0.01 | 0.01 | 0.05 | 0.1 | ||
SIL | Average | 1.44 | 1.90 | 1.18 | 0.50 | |
Max. | 1.51 | 2.03 | 1.3 | 0.50 | ||
Min. | 1.41 | 1.82 | 1.1 | 0.49 | ||
Std. Dev. | 0.02 | 0.08 | 0.06 | 0.01 |
Lithology | γb kg/m3 | σt MPa | |
---|---|---|---|
SIL | Average | 2550 | 20.3 |
Max. | 2571 | 29.7 | |
Min. | 2531 | 14.7 | |
Std. Dev. | 18 | 6.8 |
Rock Type | Marly Limestone | Micritic Limestone | |||
---|---|---|---|---|---|
Coring Orientation | PA | PE | PA | PE | |
# Samples | 2 | 2 | 5 | ||
UCS MPa | Average | 34.3 | 25.8 | 56.1 | |
CC | Average | 7.4 (0.21) | 6.9 (0.26) | 12.5 (0.22) | |
Max. | 7.7 (0.22) | 5.6 (0.22) | 20.0 (0.36) | ||
Min. | 7.0 (0.2) | 8.3 (0.32) | 6.3 (0.11) | ||
Std. Dev. | 4.7 (0.08) | ||||
CI | Average | 14.1 (0.41) | 11.4 (0.44) | 23.8 (0.42) | |
Max. | 16.8 (0.49) | 9.7 (0.38) | 33.0 (0.59) | ||
Min. | 11.4 (0.33) | 13.1 (0.50) | 16.2 (0.29) | ||
Std. Dev. | 5.6 (0.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaíno-Olivares, R.; Ziegler, M.; Bickel, S.; Ismaiel, H.; Leith, K.; Perras, M. Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt. Geotechnics 2022, 2, 825-854. https://doi.org/10.3390/geotechnics2040040
Alcaíno-Olivares R, Ziegler M, Bickel S, Ismaiel H, Leith K, Perras M. Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt. Geotechnics. 2022; 2(4):825-854. https://doi.org/10.3390/geotechnics2040040
Chicago/Turabian StyleAlcaíno-Olivares, Rodrigo, Martin Ziegler, Susanne Bickel, Hesham Ismaiel, Kerry Leith, and Matthew Perras. 2022. "Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt" Geotechnics 2, no. 4: 825-854. https://doi.org/10.3390/geotechnics2040040
APA StyleAlcaíno-Olivares, R., Ziegler, M., Bickel, S., Ismaiel, H., Leith, K., & Perras, M. (2022). Rock Mechanical Laboratory Testing of Thebes Limestone Formation (Member I), Valley of the Kings, Luxor, Egypt. Geotechnics, 2(4), 825-854. https://doi.org/10.3390/geotechnics2040040