Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = click-ready nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6144 KB  
Article
Click-Ready Gold Nanoparticles from Aqueous Mechanochemistry: 2-Propynylamine as a Reducing Agent and Surface Ligand
by Amber L. Garcia, Brian S. Mitchell, Amanda Reusch, Mark J. Fink, Juan P. Hinestroza, Yelin Ko and Julie P. Vanegas
Materials 2025, 18(19), 4470; https://doi.org/10.3390/ma18194470 - 25 Sep 2025
Viewed by 405
Abstract
We report a rapid aqueous method for synthesizing monodisperse gold nanoparticles (AuNPs), employing 2-propynylamine as both an intrinsic reducing agent and a surface-stabilizing ligand. This self-mediated process—achieved in a single step—yields spherical AuNPs with an average diameter of 4.0 ± 1.0 nm and [...] Read more.
We report a rapid aqueous method for synthesizing monodisperse gold nanoparticles (AuNPs), employing 2-propynylamine as both an intrinsic reducing agent and a surface-stabilizing ligand. This self-mediated process—achieved in a single step—yields spherical AuNPs with an average diameter of 4.0 ± 1.0 nm and a well-defined localized surface plasmon resonance band centered at 520 nm. Acting as a bifunctional molecule, 2-propynylamine simultaneously reduces HAuCl4·3H2O to elemental gold and passivates the nanoparticle surface through coordination via the amine group, while preserving a terminal alkyne (–C≡CH) functionality. This reactive moiety remains exposed and chemically accessible, enabling post-synthetic modification through Cu(I)-catalyzed azide–alkyne cycloaddition. Control experiments using alternate milling times and vial composition confirmed the essential role of 2-propynylamine in mediating both reduction and surface functionalization. The resulting alkyne-functionalized AuNPs serve as versatile “click-ready” platforms for bioconjugation, sensing, and advanced material assembly. Overall, this scalable, green approach eliminates the need for external reducing or capping agents and provides a modular route to chemically addressable nanomaterials with tunable surface reactivity. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

Back to TopTop