Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = circulating packed bed reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7249 KB  
Article
Enhanced Degradation of 4-Nitrophenol via a Two-Stage Co-Catalytic Fenton Packed-Bed Reactor with External Circulation
by Yan Liu, Jingyu Liu, Yongyou Hu, Yueyue Shi, Chaoyang Tang, Jianhua Cheng, Xiaoqiang Zhu, Guobin Wang and Jieyun Xie
Environments 2025, 12(8), 280; https://doi.org/10.3390/environments12080280 - 14 Aug 2025
Viewed by 1022
Abstract
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade [...] Read more.
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade 4-nitrophenol (4-NP). Under suitable conditions, the ECTPBR could achieve over 91.97% 4-NP degradation, with low iron sludge production (11.97 mg/L) and minimal tungsten leaching (3.6363 mg/L). The two-stage strategy enabled spatial separation of Fe3+ reduction and Fenton reactions, minimizing the loss of active sites on DPW, ensuring long-term system stability, and reducing the toxicity of 4-NPdegradation products. In addition, external circulation enhanced mass transfer and improved resistance to shock loads. These advantages suggest that the ECTPBR may serve as an effective strategy for applying co-catalytic Fenton reactions in the treatment of toxic and refractory organic wastewater. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Remediation Technologies)
Show Figures

Figure 1

13 pages, 2836 KB  
Article
Simultaneous Removal of Nitrate and Phosphate in a Pyrrhotite and Sulfur-Circulating Packed Bed Reactor
by Meiling Yu, Yongyou Hu, Donghui Liang, Guobin Wang, Xiaoqiang Zhu and Jieyun Xie
Water 2023, 15(12), 2158; https://doi.org/10.3390/w15122158 - 7 Jun 2023
Cited by 2 | Viewed by 2550
Abstract
A pyrrhotite and sulfur-circulating packed bed reactor (PS-CPBR) was constructed to study the removal process and mechanism of NO3-N and PO43−-P with different electron donors. The results showed that the NO3-N and PO4 [...] Read more.
A pyrrhotite and sulfur-circulating packed bed reactor (PS-CPBR) was constructed to study the removal process and mechanism of NO3-N and PO43−-P with different electron donors. The results showed that the NO3-N and PO43−-P removal performance of mixed electron donors (pyrrhotite and sulfur) was superior to the single electron donor (pyrrhotite). The optimum conditions of NO3-N and PO43−-P removal in the PS-CPBR were a hydraulic retention time (HRT) of 12 h and a C/N of 0, and the average removal efficiency was 100% and 86.39%. The sulfur in mixed electron donors was able to promote the dissolution of pyrrhotite and the formation of polysulfide to increase the effectiveness of electron donors, promoting the removal of NO3-N, while the PO43−-P was removed in the form of FePO4 precipitation. Microbial and functional gene analyses demonstrated that different electron donors were able to influence the abundance of microbial communities and denitrification functional genes. Meanwhile, mixed electron donors were able to increase the protein content of biofilms and reduce the resistance of electron transfer between microorganisms and electrons. Full article
(This article belongs to the Special Issue Advanced Biotechnologies for Wastewater Treatment)
Show Figures

Graphical abstract

15 pages, 7479 KB  
Review
Measuring Technologies for CFB Solid Circulation Rate: A Review and Future Perspectives
by Xiandong Liu, Man Zhang, Shuangming Zhang, Yi Ding, Zhong Huang, Tuo Zhou, Hairui Yang and Guangxi Yue
Energies 2022, 15(2), 417; https://doi.org/10.3390/en15020417 - 6 Jan 2022
Cited by 12 | Viewed by 3615
Abstract
Solid circulation rate (Gs) represents the mass flux of circulating particles in circulating fluidized bed (CFB) systems and is a significant parameter for the design and operation of CFB reactors. Many measuring technologies for Gs have been proposed, though [...] Read more.
Solid circulation rate (Gs) represents the mass flux of circulating particles in circulating fluidized bed (CFB) systems and is a significant parameter for the design and operation of CFB reactors. Many measuring technologies for Gs have been proposed, though few of them can be applied in industrial units. This paper presents a comprehensive study on measuring technologies, and the results indicate that though the accumulation method is most widely applied, it is constrained by the disturbance of normal particle circulation. Some publications have proposed mathematic models based on pressure drop or other parameters to establish Gs measurement models; these necessitate the accurate modeling of complicated gas-solid flows in industrial devices. Methods based on certain measurement devices to specify parameters like velocity require device endurance in the industrial operation environment and stable local gas-solid flow. The Gs measuring technologies are strongly influenced by local gas-solid flow states, and the packed bed flow in standpipes make the bottom of standpipes an ideal place to realize Gs measurement. Full article
(This article belongs to the Special Issue Progress and Novel Applications of Fluidized Bed Technology)
Show Figures

Figure 1

24 pages, 5229 KB  
Article
The Effect of Hydraulic Conditions in Barbotage Reactors on Aeration Efficiency
by Sebastian Kujawiak, Małgorzata Makowska and Jakub Mazurkiewicz
Water 2020, 12(3), 724; https://doi.org/10.3390/w12030724 - 6 Mar 2020
Cited by 8 | Viewed by 3766
Abstract
Barbotage reactors such as airlift reactors (ALR) and bubble column reactors (BCR), due to their two-phase flow systems, were investigated in many research papers. In their basic design variants, they are typically used to lift, mix, and aerate liquids, while, when equipped with [...] Read more.
Barbotage reactors such as airlift reactors (ALR) and bubble column reactors (BCR), due to their two-phase flow systems, were investigated in many research papers. In their basic design variants, they are typically used to lift, mix, and aerate liquids, while, when equipped with additional elements in hybrid variants, their individual properties, i.e., lifting, mixing, and aeration of liquids, can significantly change with the same reactor geometry. The object of this study was to develop a hybrid barbotage reactor in various structural design variants. The structure consisted of a barbotage column of 50 mm in diameter, used to transport a water–air mixture outside the reactor (so-called external loop). The installation was additionally equipped with a nozzle in order to improve mixture aeration and circulation efficiency. The nozzle was mounted at various heights of the column pump segment. Additionally, the reactor was equipped with s moving bed in two variants (20% and 40% reactor capacity) in order to determine its effect on the mixture aeration and circulation conditions. Based on the measurement results, aeration curves were prepared for various structural design and column packing variants of the reactor. Properties of the two-phase mixture were determined for both parts—ALR and BCR. Technological and energy parameters of the aeration process were calculated, and the results obtained for the individual structural design variants were compared. It was found that, for the most advantageous design, in terms of aeration efficiency, the aeration nozzle should be placed in the mid-length of the pump segment of the barbotage column, irrespective of the hybrid reactor packing rate with the moving bed. The reactor packing with the moving bed resulted in a decreased mean water velocity in the reactor. For most analyzed structural design variants, the respective packing with the moving bed had no significant effect on aeration efficiency. Only for one structural design variant did the lack of packing significantly improve oxygen levels by as much as approximately 41%. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop