Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cinnamon essential oil microcapsule

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5282 KiB  
Article
Effect of Litsea cubeba and Cinnamon Essential Oil Nanoemulsion Coatings on the Preservation of Plant-Based Meat Analogs
by Yiqun Zhu, Mengqing Gu, Yuhan Su, Zhe Li, Tiemin Xie, Yifan Zhang, Guohua Qiao, Fei Lu and Chunyang Han
Foods 2024, 13(21), 3365; https://doi.org/10.3390/foods13213365 - 23 Oct 2024
Cited by 2 | Viewed by 1717
Abstract
Plant-based meat analogs (PBMAs) are promising sustainable food sources. However, their high moisture and protein contents make them prone to microbial deterioration, limiting their shelf life and sensory appeal. This study explored enhancing PBMAs’ shelf life using nanoemulsions of Litsea cubeba and cinnamon [...] Read more.
Plant-based meat analogs (PBMAs) are promising sustainable food sources. However, their high moisture and protein contents make them prone to microbial deterioration, limiting their shelf life and sensory appeal. This study explored enhancing PBMAs’ shelf life using nanoemulsions of Litsea cubeba and cinnamon essential oils, emulsified with chitosan and Tween 80. The composite nanoemulsion, produced through high-pressure homogenization, exhibited a droplet size of 4.99 ± 0.03 nm, a polydispersity index (PDI) of 0.221 ± 0.008, and a zeta potential of 95.13 ± 2.67 mV, indicating remarkable stability (p < 0.05). Applied to PBMAs stored at 4 °C, it significantly improved color and pH balance and reduced thiobarbituric acid reactive substances and cooking loss. Most notably, it inhibited the growth of Escherichia coli and Staphylococcus aureus, curbing spoilage and protein oxidation, thereby extending the products’ shelf life and preserving sensory quality. As shown above, the encapsulation of LCEO/CEO in nanoemulsions effectively inhibits spoilage and deterioration in PBMAs, improving flavor and quality more than direct addition. Future studies should explore using various essential oils and emulsifiers, as well as alternative encapsulation techniques like microcapsules and nanoparticles, to further prevent PBMA deterioration. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

15 pages, 4454 KiB  
Article
Transcriptome Analysis of the Preservation Effect of Three Essential Oil Microcapsules on Okra
by Sitong Jia, Hongyan Zhang, Qiushuang Qi, Shijie Yan, Cunkun Chen and Liya Liang
Horticulturae 2024, 10(2), 193; https://doi.org/10.3390/horticulturae10020193 - 19 Feb 2024
Cited by 2 | Viewed by 2039
Abstract
Cinnamon (Cinnamomum sp.) essential oil microcapsules, oregano (Origanum sp.) essential oil microcapsules, and oregano–thyme (Thymus sp.) essential oil microcapsules are rarely used in the postharvest preservation treatment of okra (Abelmoschus esculentus L.). The mechanism of these three essential oil [...] Read more.
Cinnamon (Cinnamomum sp.) essential oil microcapsules, oregano (Origanum sp.) essential oil microcapsules, and oregano–thyme (Thymus sp.) essential oil microcapsules are rarely used in the postharvest preservation treatment of okra (Abelmoschus esculentus L.). The mechanism of these three essential oil microcapsules on the postharvest preservation of okra is also not yet well understood. In this study, fresh okra was preserved by three kinds of essential oil microcapsules (cinnamon essential oil microcapsules, oregano essential oil microcapsules, and oregano–thyme essential oil microcapsules). The effect of essential oil microcapsules on the postharvest storage quality of okra was discussed. We also used RNA-Seq to preliminarily explore the mechanism of oregano–thyme essential oil microcapsules on the pre-harvest storage quality of okra. The results showed that the three kinds of essential oil microcapsules could maintain the high sensory evaluation quality and firmness of okra, slow down the increase in respiratory intensity, slow down the total number of colonies on the fruit surface, and slow down weight loss. Through analysis, it was found that the effect of oregano–thyme essential oil microcapsules was remarkably better than that of cinnamon essential oil microcapsules and oregano essential oil microcapsules. The preservation mechanism of oregano–thyme essential oil microcapsules on postharvest okra was preliminarily elucidated by RNA-Seq. This study provides a certain basis for a follow-up study of essential oil microcapsules in the preservation of okra. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 4410 KiB  
Article
Preparation, Characterization, Release and Antibacterial Properties of Cinnamon Essential Oil Microcapsules
by Huimin Liu, Zhiwei Zhao, Wenying Xu, Mingyan Cheng, Yinfeng Chen, Menghan Xun, Qinglei Liu and Wei Wang
Coatings 2023, 13(6), 973; https://doi.org/10.3390/coatings13060973 - 23 May 2023
Cited by 23 | Viewed by 3755
Abstract
In this study, the antibacterial microcapsules of cinnamon essential oil (CEO) were prepared by complex condensation method. Chitosan quaternary ammonium salt (HACC) combined with gum arabic (GA) was selected as the coated wall material. The optimal preparation conditions of CEO microcapsules (CMSs) were [...] Read more.
In this study, the antibacterial microcapsules of cinnamon essential oil (CEO) were prepared by complex condensation method. Chitosan quaternary ammonium salt (HACC) combined with gum arabic (GA) was selected as the coated wall material. The optimal preparation conditions of CEO microcapsules (CMSs) were determined by response surface methodology (RSM): the core/wall mass ratio was 1:1, the pH value was 4.5, the mass concentration of CaCl2 was 0.7 wt% and the actual encapsulation rate of microcapsules was 90.72% ± 1.89%. The morphology, size, composition and thermal stability of the prepared CMSs were characterized by scanning electron microscopy (SEM), laser particle size analysis (LPDA), Fourier transform infrared spectroscopy (FTIR), thermogravimetric differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). In addition, the in vitro drug release and antibacterial properties of CMS were also evaluated. The results showed that CMS was spherical, with an average particle size of 6.31 µm. The obvious weight loss occurred at 269 °C and the corresponding DSC curve had an obvious exothermic peak at 265.5 °C, which had an increase compared with CEO. Microcapsules can achieve slow release, with the lowest and highest release rates being 19.66% and 49.79%, within 30 days. The drug release curve of essential oil of microcapsules was consistent with a first-order release model named ExpDec1. Based on the above research results, the CMS can effectively improve the stability of essential oil, achieve slow release and prolong the antibacterial effect, indicating its potential applications in food, cosmetics and medicine. Full article
Show Figures

Figure 1

10 pages, 2376 KiB  
Article
Enhanced Antibacterial Efficiency of Cellulosic Fibers: Microencapsulation and Green Grafting Strategies
by Dorra Dridi, Aicha Bouaziz, Sondes Gargoubi, Abir Zouari, Fatma B’chir, Aghleb Bartegi, Hatem Majdoub and Chedly Boudokhane
Coatings 2021, 11(8), 980; https://doi.org/10.3390/coatings11080980 - 18 Aug 2021
Cited by 15 | Viewed by 3753
Abstract
We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial [...] Read more.
We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial activity was assessed by the disk diffusion test. The synergic effect of essential oils mixture (cinnamon oil and clove oil) was evaluated. Antimicrobial properties were conferred to cellulosic fibers through microencapsulation using citric acid as a green binding agent. Essential oil mixture was encapsulated by coacervation using chitosan as a wall material and sodium hydroxide as a hardening agent. The diameter of the produced microcapsules varies between 12 and 48 μm. Attachment of the produced microcapsules onto cotton fabrics surface was confirmed by Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, optical microscopy and Scanning Electron Microscopy (SEM) analysis. The results show that microcapsules were successfully attached on cotton fabric surfaces, imparting antibacterial activity without significantly affecting their properties. The finished cotton fabrics exhibited good mechanical properties and wettability. Full article
(This article belongs to the Special Issue Natural Fiber Based Composites)
Show Figures

Figure 1

12 pages, 29744 KiB  
Article
Study on the Grafting of Chitosan-Essential Oil Microcapsules onto Cellulosic Fibers to Obtain Bio Functional Material
by Aicha Bouaziz, Dorra Dridi, Sondes Gargoubi, Abir Zouari, Hatem Majdoub, Chedly Boudokhane and Aghleb Bartegi
Coatings 2021, 11(6), 637; https://doi.org/10.3390/coatings11060637 - 27 May 2021
Cited by 18 | Viewed by 4775
Abstract
The purpose of this work was to prepare chitosan–essential oil microcapsules using the simple coacervation method and to graft them onto cellulosic fibers to obtain bio functional textile. The microcapsules morphology was characterized by optical microscopy. The 2D dimethyloldihydroxyethylene urea resin (DMDHEU) was [...] Read more.
The purpose of this work was to prepare chitosan–essential oil microcapsules using the simple coacervation method and to graft them onto cellulosic fibers to obtain bio functional textile. The microcapsules morphology was characterized by optical microscopy. The 2D dimethyloldihydroxyethylene urea resin (DMDHEU) was used as a binding agent to graft microcapsules on the surface of cellulosic fibers. Scanning Electron Microscopy (SEM) photographs and Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) analyses were performed to prove the interaction between cellulosic fibers and microcapsules. Furthermore, the properties of the different fabrics such as mechanical strength and air permeability were investigated. Furthermore, washing durability was evaluated. Finally, the antibacterial activity of the finished fibers against the strains Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated. The results evidence the ability of treated fabrics to induce bacteria growth inhibition. The coacervation method is a simple process to incorporate cinnamon essential oil on the cellulosic fiber’s surface. The use of essential oils as active agents seems to be a promising tool for many protective textile substrates such as antimicrobial masks, bacteriostatic fabrics and healthcare textiles. Full article
(This article belongs to the Special Issue Natural Fiber Based Composites)
Show Figures

Figure 1

8 pages, 789 KiB  
Proceeding Paper
Controlled Release of Cinnamon Leaf Oil from Chitosan Microcapsules Embedded within a Sodium Alginate/Gelatin Hydrogel-Like Film for Pseudomonas aeruginosa Elimination
by Catarina S. Miranda, Joana C. Antunes, Natália C. Homem and Helena P. Felgueiras
Proceedings 2021, 69(1), 39; https://doi.org/10.3390/CGPM2020-07181 - 3 Nov 2020
Cited by 8 | Viewed by 1683
Abstract
Pseudomonas aeruginosa is considered a public threat, with antibiotics increasing their resistance. Essential oils (EOs) have demonstrated significant effects against microorganisms. However, due to their volatile nature, they cannot be used in their free-state. Here, hydrogel-like films were produced from a combination of [...] Read more.
Pseudomonas aeruginosa is considered a public threat, with antibiotics increasing their resistance. Essential oils (EOs) have demonstrated significant effects against microorganisms. However, due to their volatile nature, they cannot be used in their free-state. Here, hydrogel-like films were produced from a combination of sodium alginate (SA) and gelatin (GN) to serve as delivery platforms for the controlled release of cinnamon leaf oil (CLO) entrapped within chitosan (CS) microcapsules. The minimum inhibitory concentration (MIC) of CLO was established at 39.3 mg/mL against P. aeruginosa. CS microcapsules were prepared via ionotropic gelation with tripolyphosphate (TPP), encapsulating CLO at MIC. Successful production was confirmed by fluorescent microscopy using Nile red as a detection agent. Microcapsules were embedded within a biodegradable SA/GN polymeric matrix processed by solvent casting/phase inversion with SA/GN used at 70/30 polymer ratio at 2 wt.% SA concentration. A concentration of 2 wt.% CaCl2 was used as a coagulation bath. The CLO-containing CS microcapsules’ homogeneous distribution was guaranteed by successive vortex and blending processes applied prior to casting. CLO controlled release from the films was monitored in physiological pH for 24 h. Hydrated films were obtained, with the presence of loaded CS capsules being confirmed by FTIR. Qualitative/quantitative antimicrobial examinations validated the loaded film potential to fight P. aeruginosa. Full article
Show Figures

Figure 1

16 pages, 3552 KiB  
Article
A Novel Shell Material—Highland Barley Starch for Microencapsulation of Cinnamon Essential Oil with Different Preparation Methods
by Liang Li, Wenhui Zhang, Jian Peng, Bei Xue, Zhendong Liu, Zhang Luo, Deze Lu and Xiaorui Zhao
Materials 2020, 13(5), 1192; https://doi.org/10.3390/ma13051192 - 6 Mar 2020
Cited by 25 | Viewed by 3384
Abstract
Highland barley starch (HBS), as a carbohydrate shell material with excellent performance in microcapsule applications, has rarely been reported. In the present study, three different microcapsules (CEO-SWSM, CEO-PM, and CEO-UM) were synthesized successfully via saturated aqueous solution method, molecular inclusion method and ultrasonic [...] Read more.
Highland barley starch (HBS), as a carbohydrate shell material with excellent performance in microcapsule applications, has rarely been reported. In the present study, three different microcapsules (CEO-SWSM, CEO-PM, and CEO-UM) were synthesized successfully via saturated aqueous solution method, molecular inclusion method and ultrasonic method, respectively, using HBS as shell material coupled with cinnamon essential oil (CEO) as the core material. The potential of HBS as a new shell material and the influence of synthetic methods on the performance of microcapsules, encapsulation efficiency (EE), yield, and release rate of CEO-SWSM, CEO-PM, and CEO-UM were determined, respectively. The results confirmed that CEO-PM had the most excellent EE (88.2%), yield (79.1%), as well as lowest release rate (11.5%, after 25 days of storage). Moreover, different kinetic models were applied to fit the release process of these three kinds of microcapsules: CEO-SWSM, CEO-PM, and CEO-UM had the uppermost R-squared value in the Higuchi model, the zero-order model, and the first-level model, respectively. Over all, this work put forward a novel perspective for the improved encapsulation effect of perishable core materials (e.g., essential oil) for the food industry. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

19 pages, 4562 KiB  
Article
Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes
by Cheng Yin, Chongxing Huang, Jun Wang, Ying Liu, Peng Lu and Lijie Huang
Materials 2019, 12(13), 2039; https://doi.org/10.3390/ma12132039 - 26 Jun 2019
Cited by 117 | Viewed by 7447
Abstract
During this study, fresh mangoes were packed into multilayer coatings made from chitosan containing cinnamon essential oil microcapsules and alginate solutions that were alternately deposited on the mango surfaces by electrostatic interaction. We then compared the physical and chemical indexes to examine the [...] Read more.
During this study, fresh mangoes were packed into multilayer coatings made from chitosan containing cinnamon essential oil microcapsules and alginate solutions that were alternately deposited on the mango surfaces by electrostatic interaction. We then compared the physical and chemical indexes to examine the changes in the mangoes during 14 d of storage. The results showed that the microcapsules prepared in the experiment were of uniform size, with the sustained release of essential oil exceeding 168 h. Compared with uncoated mangoes, the mangoes coated with the coatings could effectively inhibit the decrease of the titratable acid, soluble solids, and vitamin C contents; slow down the increase of the weight loss and pH; delay the appearance of mango respiration peaks; and preserve the firmness at storage conditions of 25 °C and 50% RH. Our findings revealed that mangoes without treatment showed losses in their edible and commercial value after 14 days in storage, and the mangoes coated with five layers still retained food and commercial value. Cross-sectional scanning electron microscopy images of the coatings showed that they had distinct layers and were of good uniformity and tight binding, and they also had good adhesion to the mango surface. These findings provide important insights into the use of coatings for the packaging of fruits during storage, which is essential for promoting the application of coatings for packaging preservation without big cost and expensive equipment. Full article
Show Figures

Graphical abstract

Back to TopTop