Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = chronic bedridden condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 25300 KiB  
Article
Alcalase-Assisted Mytilus edulis Hydrolysate: A Nutritional Approach for Recovery from Muscle Atrophy
by R. P. G. S. K. Amarasiri, Jimin Hyun, Sang-Woon Lee, Jin Kim, You-Jin Jeon and Jung-Suck Lee
Mar. Drugs 2023, 21(12), 623; https://doi.org/10.3390/md21120623 - 29 Nov 2023
Cited by 5 | Viewed by 2968
Abstract
Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development [...] Read more.
Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development of preventive strategies. Although exercising is effective in managing this condition, it is applicable only for individuals who can engage in physical activities and are not bedridden. A combination of exercise and nutritional supplementation has emerged as a more advantageous approach. Here, we evaluated the effects of enzyme-assisted hydrolysates of Mytilus edulis prepared using Protamex (PMH), Alcalase (AMH), or Flavourzyme (FMH) in protecting against muscle atrophy in a dexamethasone (Dex)-induced muscular atrophy model in vitro and in vitro. Alcalase-assisted M. edulis hydrolysate (AMH) was the most efficient among the tested treatments and resulted in higher protein recovery (57.06 ± 0.42%) and abundant amino acid composition (43,158 mg/100 g; 43.16%). AMH treatment also escalated the proliferation of C2C12 cells while increasing the total number of nuclei, myotube coverage, and myotube diameter. These results were corroborated by a successful reduction in the levels of proteins responsible for muscle atrophy, including E3 ubiquitin ligases, and an increase in the expression of proteins associated with muscle hypertrophy, including myogenin and MyHC. These results were further solidified by the successful enhancement of locomotor ability and body weight in zebrafish following AMH treatment. Thus, these findings highlight the potential of AMH in recovery from muscle atrophy. Full article
Show Figures

Figure 1

9 pages, 1389 KiB  
Article
Chronic Bedridden Condition Is Reflected by Substantial Changes in Plasma Inflammatory Profile
by Roberta Magliozzi, Anna Pedrinolla, Stefania Rossi, Anna Maria Stabile, Elisa Danese, Giuseppe Lippi, Federico Schena, Massimiliano Calabrese and Massimo Venturelli Venturelli
Biomolecules 2022, 12(12), 1867; https://doi.org/10.3390/biom12121867 - 13 Dec 2022
Cited by 1 | Viewed by 1817
Abstract
Absent or reduced physical activity and spontaneous movement over days, weeks, or even years may lead to problems in almost every major organ/system in the human body. In this study, we investigated whether the dysregulation and alteration of plasma protein inflammatory profiling can [...] Read more.
Absent or reduced physical activity and spontaneous movement over days, weeks, or even years may lead to problems in almost every major organ/system in the human body. In this study, we investigated whether the dysregulation and alteration of plasma protein inflammatory profiling can stratify chronic bedridden conditions observed in 22 elderly chronic bedridden (CBR) individuals with respect to 11 age-matched active (OLD) controls. By using a combination of immune-assay multiplex techniques, a complex of 27 inflammatory mediators was assessed in the plasma collected from the two groups. A specific plasma protein signature is indeed able to distinguish IPO individuals from age-matched OLD controls; while significantly (p < 0.001) higher protein levels of IL-2, IL-7, and IL-12p70 were measured in the plasma of CBR with respect to OLD individuals, significantly (p < 0.01) higher levels of seven inflammatory mediators, including IL-9, PDGF-b, CCL4 (MIP-1b), CCL5 (RANTES), IL-1Ra, CXCL10 (IP10), and CCL2 (MCP-1), were identified in OLD individuals with respect to CBR individuals. These data suggest that the chronic absence of physical activity may contribute to the dysregulation of a complex molecular pattern occurring with ageing and that specific plasma protein signatures may represent potential biomarkers as well as new potential therapeutic targets for new treatments aimed at improving health expectancy. Full article
Show Figures

Figure 1

15 pages, 660 KiB  
Review
Reactive Oxygen Species and Pressure Ulcer Formation after Traumatic Injury to Spinal Cord and Brain
by Suneel Kumar, Thomas Theis, Monica Tschang, Vini Nagaraj and Francois Berthiaume
Antioxidants 2021, 10(7), 1013; https://doi.org/10.3390/antiox10071013 - 24 Jun 2021
Cited by 30 | Viewed by 4968
Abstract
Traumatic injuries to the nervous system, including the brain and spinal cord, lead to neurological dysfunction depending upon the severity of the injury. Due to the loss of motor (immobility) and sensory function (lack of sensation), spinal cord injury (SCI) and brain injury [...] Read more.
Traumatic injuries to the nervous system, including the brain and spinal cord, lead to neurological dysfunction depending upon the severity of the injury. Due to the loss of motor (immobility) and sensory function (lack of sensation), spinal cord injury (SCI) and brain injury (TBI) patients may be bed-ridden and immobile for a very long-time. These conditions lead to secondary complications such as bladder/bowel dysfunction, the formation of pressure ulcers (PUs), bacterial infections, etc. PUs are chronic wounds that fail to heal or heal very slowly, may require multiple treatment modalities, and pose a risk to develop further complications, such as sepsis and amputation. This review discusses the role of oxidative stress and reactive oxygen species (ROS) in the formation of PUs in patients with TBI and SCI. Decades of research suggest that ROS may be key players in mediating the formation of PUs. ROS levels are increased due to the accumulation of activated macrophages and neutrophils. Excessive ROS production from these cells overwhelms intrinsic antioxidant mechanisms. While short-term and moderate increases in ROS regulate signal transduction of various bioactive molecules; long-term and excessively elevated ROS can cause secondary tissue damage and further debilitating complications. This review discusses the role of ROS in PU development after SCI and TBI. We also review the completed and ongoing clinical trials in the management of PUs after SCI and TBI using different technologies and treatments, including antioxidants. Full article
(This article belongs to the Special Issue Reactive Oxygen Species in Different Biological Processes)
Show Figures

Graphical abstract

Back to TopTop