Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = chloride-induced stress corrosion cracking (CISCC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 28581 KiB  
Review
Peening Techniques for Mitigating Chlorine-Induced Stress Corrosion Cracking of Dry Storage Canisters for Nuclear Applications
by Subin Antony Jose, Merbin John, Manoranjan Misra and Pradeep L. Menezes
Materials 2025, 18(2), 438; https://doi.org/10.3390/ma18020438 - 18 Jan 2025
Cited by 3 | Viewed by 907
Abstract
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear [...] Read more.
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors. The CISCC failure leads to nuclear radiation leakage. Therefore, there is a critical need to enhance the CISCC resistance of DSC weld joints using promising repair techniques. This review article encapsulates the current state-of-the-art of peening techniques for mitigating the CISCC in DSCs. More specifically, conventional shot peening (CSP), ultrasonic impact peening (UIP), and laser shock peening (LSP) were elucidated with a focus on CISCC mitigation. The underlying mechanism of CISCC mitigation in each process was summarized. Finally, this review provides recent advances in surface modification techniques, repair techniques, and developments in welding techniques for CISCC mitigation in DSCs. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

28 pages, 11931 KiB  
Article
Chloride-Induced Stress Corrosion Cracking of Friction Stir-Welded 304L Stainless Steel: Effect of Microstructure and Temperature
by Anirban Naskar, Madhumanti Bhattacharyya, Saumyadeep Jana, Jens Darsell, Krishnan S. Raja and Indrajit Charit
Crystals 2024, 14(6), 556; https://doi.org/10.3390/cryst14060556 - 16 Jun 2024
Cited by 2 | Viewed by 1795
Abstract
Dry storage canisters of used nuclear fuels are fabricated using SUS 304L stainless steel. Chloride-induced stress corrosion cracking (CISCC) is one of the major failure modes of dry storage canisters. The cracked canisters can be repaired by friction stir welding (FSW), a low-heat [...] Read more.
Dry storage canisters of used nuclear fuels are fabricated using SUS 304L stainless steel. Chloride-induced stress corrosion cracking (CISCC) is one of the major failure modes of dry storage canisters. The cracked canisters can be repaired by friction stir welding (FSW), a low-heat input ‘solid-phase’ welding process. It is important to evaluate the ClSCC resistance of the friction stir welded material. Stress corrosion cracking (SCC) studies were carried out on mill-annealed base materials and friction stir welded 304L stainless U-bend specimens in 3.5% NaCl + 5 N H2SO4 solution at room temperature and boiling MgCl2 solution at 155 °C. The engineering stress on the outer fiber of the FSW U-bend specimen was ~60% higher than that of the base metal (BM). In spite of the higher stress level of the FSW, both materials (FSW and BM) showed almost similar SCC failure times in the two different test solutions. The SCC occurred in the thermo-mechanically affected zone (TMAZ) of the FSW specimens in the 3.5% NaCl + 5 N H2SO4 solution at room temperature, while the stirred zone (SZ) was relatively crack-free. The failure occurred at the stirred zone when tested in the boiling MgCl2 solution. Hydrogen reduction was the cathodic reaction in the boiling MgCl2 solution, which promoted hydrogen-assisted cracking of the heavily deformed stirred zone. The emergence of the slip step followed by passive film rupture and dissolution of the slip step could be the SCC events in the 3.5% NaCl + 5 N H2SO4 solution at room temperature. However, the slip step height was not sufficient to cause passivity breakdown in the fine-grained SZ. Therefore, the SCC occurred in the partially recrystallized softer TMAZ. Overall, the friction-stirred 304L showed higher tolerance to ClSCC than the 304L base metal. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 9271 KiB  
Article
Study of Mechanical Properties, Microstructure, and Residual Stresses of AISI 304/304L Stainless Steel Submerged Arc Weld for Spent Fuel Dry Storage Systems
by Wei Tang, Stylianos Chatzidakis, Caleb Matthew Schrad, Roger G. Miller and Robert Howard
Metals 2024, 14(3), 262; https://doi.org/10.3390/met14030262 - 22 Feb 2024
Cited by 4 | Viewed by 1923
Abstract
The confinement boundaries of spent nuclear fuel (SNF) canisters are typically fusion welded. Welded microstructures, strain hardening, and residual stresses combined with a chemically aggressive, chloride-rich environment led to concerns that the welded canister may be susceptible to chloride-induced stress corrosion cracking (CISCC). [...] Read more.
The confinement boundaries of spent nuclear fuel (SNF) canisters are typically fusion welded. Welded microstructures, strain hardening, and residual stresses combined with a chemically aggressive, chloride-rich environment led to concerns that the welded canister may be susceptible to chloride-induced stress corrosion cracking (CISCC). A comprehensive understanding of the modification of stainless steel (SS) metallurgical and mechanical properties by fusion welding could accelerate the predictive analysis of CISCC susceptibility. This paper describes a submerged arc welding (SAW) procedure that was developed and qualified on 12.7 mm (0.5 in.) thick AISI 304/304L SS to produce joints in a way similar to actual SNF canister manufacturing. This procedure has the potential to reduce the production cost and weld CISCC susceptibility by using fewer welding passes and lower heat input than current industrial applications. Global and local mechanical behaviors and properties, as well as residual stress distributions on the welded joint, were studied. The results indicate that hardness values in the fusion zone (FZ) and heat-affected zone (HAZ) are slightly higher than that of the base metal. Strain localization was presented in the HAZ before the tensile stress reached its maximum value, and then it shifted to the FZ. The specimen finally broke in the FZ. High tensile residual stresses exhibited in the FZ and the nearby HAZ suggest the highest CISCC-susceptible spots. The maximum tensile residual stresses were along the welding direction, indicating that if cracks occur, they would be perpendicular to the welding direction. This study involved developing and qualifying a SAW procedure for SNF canister production. The new procedure yielded cost savings (SAW working efficiency increased by about 80%), improved mechanical properties, and presented moderate residual stresses. Analysis revealed that the welded joint’s low-stress and high-stress damage assessments may be affected by shifts in the strain localization spot under loading. Full article
Show Figures

Graphical abstract

21 pages, 14270 KiB  
Article
Effect of Laser Shock Peening on the Stress Corrosion Cracking of 304L Stainless Steel
by Young-Ran Yoo, Seung-Heon Choi and Young-Sik Kim
Metals 2023, 13(3), 516; https://doi.org/10.3390/met13030516 - 3 Mar 2023
Cited by 17 | Viewed by 3795
Abstract
Storage canisters used in nuclear power plants operating in seaside areas—where the salt content in the atmosphere is high—may be susceptible to chloride-induced stress corrosion cracking (CISCC). Chloride-induced stress corrosion cracking is one of the ways in which dry storage canisters made of [...] Read more.
Storage canisters used in nuclear power plants operating in seaside areas—where the salt content in the atmosphere is high—may be susceptible to chloride-induced stress corrosion cracking (CISCC). Chloride-induced stress corrosion cracking is one of the ways in which dry storage canisters made of stainless steel can degrade. Stress corrosion cracking depends on the microstructure and residual stress, and it is therefore very important to improve the surface properties of materials. Laser shock peening both greatly deforms the material surface and refines grains, and it generates compressive residual stress in the deep part from the surface of the material. This study focused on the effect of laser shock peening on the stress corrosion cracking of 304L stainless steel. The laser shock peening was found to induce compressive residual stress from the surface to a 1 mm depth, and the SCC properties were evaluated by a U-bend test. The results showed that the SCC resistance of laser-peened 304L stainless steel in a chloride environment was enhanced, and that it was closely related to grain size, the pitting potential of the cross section, and residual stress. Full article
Show Figures

Figure 1

14 pages, 5584 KiB  
Article
Nanoindentation Investigation of Chloride-Induced Stress Corrosion Crack Propagation in an Austenitic Stainless Steel Weld
by Haozheng J. Qu and Janelle P. Wharry
Metals 2022, 12(8), 1243; https://doi.org/10.3390/met12081243 - 23 Jul 2022
Cited by 6 | Viewed by 2905
Abstract
Transgranular chloride-induced stress corrosion cracking (TGCISCC) is a mounting concern for the safety and longevity of arc welds on austenitic stainless steel (AuSS) nuclear waste storage canisters. Recent studies have shown the key role of crystallography in the susceptibility and propagation of TGCISCC [...] Read more.
Transgranular chloride-induced stress corrosion cracking (TGCISCC) is a mounting concern for the safety and longevity of arc welds on austenitic stainless steel (AuSS) nuclear waste storage canisters. Recent studies have shown the key role of crystallography in the susceptibility and propagation of TGCISCC in SS weldments. Given that crystallography underlies mechanical heterogeneities, the mechanical-crystallographic relationship during TGCISCC growth must be understood. In this study, welded SS 304L coupons are loaded in four-point bend fixtures and then boiled in magnesium chloride to initiate TGCISCC. Nanoindentation mapping is paired with scanning electron microscopy (SEM) electron backscatter diffraction (EBSD) to understand the correlation between grain orientation, grain boundaries, and hardening from TGCISCC propagation. The nanoindentation hardness of individual grains is found to not be a controlling factor for TGCISCC propagation. However, intragranular hardness is generally highest immediately around the crack due to localized strain hardening at the crack tip. This work shows that nanoindentation techniques can be useful in understanding CISCC behaviors when paired with electron microscopy. Full article
(This article belongs to the Special Issue Advanced Characterization and Testing of Nuclear Materials)
Show Figures

Figure 1

12 pages, 8162 KiB  
Review
Application of the Advanced Surface Modification Process to the ASME Code Case for Sections III and XI of Nuclear Power Plants
by Sungwoo Cho, Hyun-Uk Hong, Nicholas Mohr, Marc Albert, John Broussard, Auezhan Amanov and Young-Sik Pyun
Metals 2020, 10(2), 210; https://doi.org/10.3390/met10020210 - 1 Feb 2020
Cited by 1 | Viewed by 3184
Abstract
The advanced surface modification process is known as a promising solution to improve the performance of machine components and systems, especially for vehicles, nuclear power plants, biomedical device, etc. There have been several successful applications of water jet peening and underwater laser peening [...] Read more.
The advanced surface modification process is known as a promising solution to improve the performance of machine components and systems, especially for vehicles, nuclear power plants, biomedical device, etc. There have been several successful applications of water jet peening and underwater laser peening to nuclear components in Japan since 2001 which resulted in inspection and repair cost savings. The prerequisite condition for the application of the advanced surface modification process to nuclear power plants is the approval of the American Society of Mechanical Engineers (ASME) Code Case, so performance criteria and requirements (PCRs) in the ASME Code Case for repair and maintenance of nuclear power components are explained. A challenging project to apply advanced surface modification processes, such as ultrasonic nanocrystal surface modification and air laser peening to new nuclear power plants and new canisters, was created with the goal to develop a technical basis and the PCRs for ASME Section III (New Manufacturing). The results of this work will be an ASME Section III Code Case which is currently in progress. An initial draft of the new Code Case with the intermediate results of this work is introduced. Four kinds of advanced surface modification processes are explained and compared briefly. Full article
(This article belongs to the Special Issue Advanced Surface Modification Technologies)
Show Figures

Figure 1

Back to TopTop