Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cheesecloth separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1958 KB  
Article
Inclusion of Camelina sativa Seeds in Ewes’ Diet Modifies Rumen Microbiota
by Christos Christodoulou, Alexandros Mavrommatis, Dimitris Loukovitis, George Symeon, Vassilios Dotas, Basiliki Kotsampasi and Eleni Tsiplakou
Animals 2023, 13(3), 377; https://doi.org/10.3390/ani13030377 - 22 Jan 2023
Cited by 7 | Viewed by 3156
Abstract
Supplementing ruminant diets with unconventional feedstuffs (Camelina sativa seeds; CS) rich in bioactive molecules such as polyunsaturated fatty acids, may prove a potential eco-efficient strategy to manipulate rumen microbiome towards efficiency. Forty-eight ewes were divided into four homogenous groups (n = [...] Read more.
Supplementing ruminant diets with unconventional feedstuffs (Camelina sativa seeds; CS) rich in bioactive molecules such as polyunsaturated fatty acids, may prove a potential eco-efficient strategy to manipulate rumen microbiome towards efficiency. Forty-eight ewes were divided into four homogenous groups (n = 12) according to their fat-corrected milk yield (6%), body weight, and age, and were fed individually with concentrate, alfalfa hay, and wheat straw. The concentrate of the control group (CON) had no CS inclusion, whereas the treated groups were supplemented with CS at 60 (CS6), 110 (CS11), and 160 (CS16) g·kg−1 of concentrate, respectively. Rumen digesta was collected using an esophageal tube and then liquid and solid particles were separated using cheesecloth layers. An initial bacteriome screening using next-generation sequencing of 16S was followed by specific microbes targeting with a RT-qPCR platform, which unveiled the basic changes of the rumen microbiota under CS supplementation levels. The relative abundances of Archaea and methanogens were significantly reduced in the solid particles of CS11 and CS16. Furthermore, the relative abundance of Protozoa was significantly increased in both rumen fluid and solid particles of the CS6, whereas that of Fungi was significantly reduced in the rumen particle of the CS16. In rumen fluid, the relative abundance of Fibrobacter succinogens and Ruminobacter amylophilus were significantly increased in the CS6 and CS11, respectively. In the solid particles of the CS11, the relative abundance of Ruminococcus flavefaciens was significantly reduced, whereas those of Butyrivibrio proteoclasticus and Ruminobacter amylophilus were significantly increased. Additionally, the relative abundance of Selenomonas ruminantium was significantly increased in both CS11 and CS16. Consequently, the highest CS content in the concentrate reduced the relative abundance of methanogens without inducing radical changes in rumen microorganisms that could impair ruminal fermentation and ewes’ performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Modulating Rumen Microbiome)
Show Figures

Figure 1

15 pages, 10003 KB  
Article
Study on the Correlation between the Protein Profile of Lupin Milk and Its Cheese Production Compared with Cow’s Milk
by Nadia Al-Saedi, Manjree Agarwal, Shahidul Islam and Yong-Lin Ren
Molecules 2021, 26(8), 2395; https://doi.org/10.3390/molecules26082395 - 20 Apr 2021
Cited by 6 | Viewed by 4130
Abstract
Australian sweet lupin, the largest legume crop grown in Western Australia, is receiving global attention from the producers of new foods. To understand the effect of protein on cheese yield, lupin milk proteins were separated from the first, second, and third filtrations by [...] Read more.
Australian sweet lupin, the largest legume crop grown in Western Australia, is receiving global attention from the producers of new foods. To understand the effect of protein on cheese yield, lupin milk proteins were separated from the first, second, and third filtrations by cheesecloths. However, proteins from the first and second were analyzed using two-dimensional polyacrylamide gel electrophoresis; then, the isolated proteins associated with cheese production were identified. The research also focused on identifying the optimal method of cheese production based on the coagulation process, temperature, yield, and sensory evaluation. Lupin curds from the two cultivars, Mandelup and PBA Jurien, were produced using vinegar, lemon juice, starter culture, vegetable rennet enzyme as coagulant, as well as curd generated using starter culture and vegetable rennet enzyme. Cow’s milk was used as a control. The results indicated that first-time filtration produced better extraction and higher yield of lupin proteins and cheese than the second filtration. A sensory analysis indicated that lupin cheese produced from PBA Jurien lupin milk using vinegar, 7.80% expressed as acetic acid, and ground in 45 °C water, was the most acceptable. The cheeses were examined for their protein, carbohydrates, fat, ash, and moisture contents. The concentration of protein was approximately 27.3% and 20.6%, respectively, in the cheese from PBA Jurien and Mandelup. These results suggest that lupin milk can adequately supply the proteins needed in human diets and, thus, could be used in the production of many existing products that require animal milk as an input. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

30 pages, 3014 KB  
Article
Study on Effect of Extraction Techniques and Seed Coat on Proteomic Distribution and Cheese Production from Soybean Milk
by Nadia Al-Saedi, Manjree Agarwal, Wujun Ma, Shahidul Islam and Yonglin Ren
Molecules 2020, 25(14), 3237; https://doi.org/10.3390/molecules25143237 - 16 Jul 2020
Cited by 2 | Viewed by 4166
Abstract
Soybean-based food products are a major source of protein. In the present study, proteins in soybean milk from seeds of the cultivar Bunya (Glycine max) were extracted using the cheesecloth and the centrifuge methods. The milk was produced through mechanical crushing [...] Read more.
Soybean-based food products are a major source of protein. In the present study, proteins in soybean milk from seeds of the cultivar Bunya (Glycine max) were extracted using the cheesecloth and the centrifuge methods. The milk was produced through mechanical crushing of both whole and split seeds in water. Following separation by either the cheesecloth or centrifuge, proteins were isolated from the soybean milk by using thiourea/urea solubilisation and then separated them using two-dimensional polyacrylamide gel electrophoresis. The isolated proteins were identified by mass spectrometry. A total of 97 spots were identified including 49 that displayed different abundances. Of the two separation techniques, centrifuge separation gave higher protein extraction and more intense protein spots than cheesecloth separation. Eleven of the β-subunits of β-conglycinin, three of the α-subunits of β-conglycinin, and four of the mutant glycinin showed different levels of abundances between separation techniques, which might be related to subsequent cheese quality. Notably, split-seed soybean milk has less allergenic proteins with four α-subunits of β-conglycinin compared to whole-seed milk with eight of those proteins. The sensory evaluation showed that the cheese produced from split-soybean milk received higher consumer preferences compared to that of whole seed, which could be explained by their proteomic differences. The demonstrated reference map for whole and split-seed soybean milk could be further utilized in the research related to soybean cheesemaking. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Figure 1

17 pages, 4049 KB  
Article
Proteomic Characterisation of Lupin (Lupinus angustifolius) Milk as Influenced by Extraction Techniques, Seed Coat and Cultivars
by Nadia Al-Saedi, Manjree Agarwal, Wujun Ma, Shahidul Islam and Yonglin Ren
Molecules 2020, 25(8), 1782; https://doi.org/10.3390/molecules25081782 - 13 Apr 2020
Cited by 11 | Viewed by 3869
Abstract
Lupin seeds are rich in proteins and other essential ingredients that can help to improve human health. The protein contents in both whole and split seeds of two lupin cultivars (Mandleup and PBA Jurien) were used to produce the lupin milk using the [...] Read more.
Lupin seeds are rich in proteins and other essential ingredients that can help to improve human health. The protein contents in both whole and split seeds of two lupin cultivars (Mandleup and PBA Jurien) were used to produce the lupin milk using the cheesecloth and centrifuge method. Proteins were extracted from the lupin milk using thiourea/urea solubilization. The proteins were separated by a two-dimensional polyacrylamide gel electrophoresis and then identified with mass spectrometry. A total of 230 protein spots were identified, 60 of which showed differential abundances. The cheesecloth separation showed protein extractability much better than that of the centrifuge method for both the cultivars. The results from this study could offer guidance for future comparative analysis and identification of lupin milk protein and provide effective separation technique to determine specific proteins in the cheese-making process. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop