Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = characteristic length of residual ice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2743 KiB  
Article
Experimental Study on Ice Shedding Behaviors for Aero-Engine Fan Blade Icing during Ground Idle
by Liping Wang, Kun Yang, Fang Yu and Fuxin Wang
Aerospace 2024, 11(10), 853; https://doi.org/10.3390/aerospace11100853 - 16 Oct 2024
Cited by 1 | Viewed by 1852
Abstract
Fan blade icing can affect efficiency and aerodynamic stability, and the shed ice may be sucked into the core of the engine, causing adverse effects or even damage to the compressor components. Ice accretion and shedding are among the key issues in engine [...] Read more.
Fan blade icing can affect efficiency and aerodynamic stability, and the shed ice may be sucked into the core of the engine, causing adverse effects or even damage to the compressor components. Ice accretion and shedding are among the key issues in engine design and tests. But they have not been clearly understood. In this work, ice shedding from rotating aero-engine fan blades during continuous icing is experimentally investigated under the relevant airworthiness requirements. The phenomena of icing and ice shedding under different ambient temperatures and engine speeds are recorded to obtain the ice-shedding time and the characteristic length of the residual ice. Force analysis is used to understand the corresponding behavior. The degree of ice-shedding balance Db is defined to explore the symmetry of ice shedding. The results show that the shedding time is significantly affected by the rotational speed, and the characteristic length will first shorten and then grow as the ambient temperature decreases. When the ice shedding is completed instantaneously, Db will show a violent shock. There is a critical ambient temperature, below which the ice accretion will worsen significantly as temperature decreases. For aero-engine fan blade icing tests during ground idle, the critical ambient temperature ranges from −5 C to −9 C. In order for the ice to shed faster, the engine speed has to reach a threshold. This study can shed light on the preliminary characteristics of ice shedding from rotating components and provide guidance and a data basis for the numerical simulation of fan blade icing and the design of an aero-engine. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 4182 KiB  
Article
Cold-Adapted Glutathione S-Transferases from Antarctic Psychrophilic Bacterium Halomonas sp. ANT108: Heterologous Expression, Characterization, and Oxidative Resistance
by Yanhua Hou, Chenhui Qiao, Yifan Wang, Yatong Wang, Xiulian Ren, Qifeng Wei and Quanfu Wang
Mar. Drugs 2019, 17(3), 147; https://doi.org/10.3390/md17030147 - 1 Mar 2019
Cited by 23 | Viewed by 3859
Abstract
Glutathione S-transferases are one of the most important antioxidant enzymes to protect against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene, designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and expressed [...] Read more.
Glutathione S-transferases are one of the most important antioxidant enzymes to protect against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene, designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and expressed in Escherichia coli (E. coli) BL21. The hsgst gene was 603 bp in length and encoded a protein of 200 amino acids. Compared with the mesophilic EcGST, homology modeling indicated HsGST had some structural characteristics of cold-adapted enzymes, such as higher frequency of glycine residues, lower frequency of proline and arginine residues, and reduced electrostatic interactions, which might be in relation to the high catalytic efficiency at low temperature. The recombinant HsGST (rHsGST) was purified to apparent homogeneity with Ni-affinity chromatography and its biochemical properties were investigated. The specific activity of the purified rHsGST was 254.20 nmol/min/mg. The optimum temperature and pH of enzyme were 25 °C and 7.5, respectively. Most importantly, rHsGST retained 41.67% of its maximal activity at 0 °C. 2.0 M NaCl and 0.2% H2O2 had no effect on the enzyme activity. Moreover, rHsGST exhibited its protective effects against oxidative stresses in E. coli cells. Due to its high catalytic efficiency and oxidative resistance at low temperature, rHsGST may be a potential candidate as antioxidant in low temperature health foods. Full article
(This article belongs to the Special Issue Marine Antioxidant)
Show Figures

Figure 1

Back to TopTop