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Abstract: Glutathione S-transferases are one of the most important antioxidant enzymes to protect
against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene,
designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and
expressed in Escherichia coli (E. coli) BL21. The hsgst gene was 603 bp in length and encoded a protein
of 200 amino acids. Compared with the mesophilic EcGST, homology modeling indicated HsGST
had some structural characteristics of cold-adapted enzymes, such as higher frequency of glycine
residues, lower frequency of proline and arginine residues, and reduced electrostatic interactions,
which might be in relation to the high catalytic efficiency at low temperature. The recombinant HsGST
(rHsGST) was purified to apparent homogeneity with Ni-affinity chromatography and its biochemical
properties were investigated. The specific activity of the purified rHsGST was 254.20 nmol/min/mg.
The optimum temperature and pH of enzyme were 25 ◦C and 7.5, respectively. Most importantly,
rHsGST retained 41.67% of its maximal activity at 0 ◦C. 2.0 M NaCl and 0.2% H2O2 had no effect on
the enzyme activity. Moreover, rHsGST exhibited its protective effects against oxidative stresses in
E. coli cells. Due to its high catalytic efficiency and oxidative resistance at low temperature, rHsGST
may be a potential candidate as antioxidant in low temperature health foods.

Keywords: glutathione S-transferases; cold-adapted; Antarctic; antioxidant defense;
homology modeling

1. Introduction

Antarctica is isolated geographically from other continents and presents an extremely harsh
environment on the earth. Antarctic environment has the characteristics of low temperature, high
salinity, low nutrient availability, and strong ultraviolet (UV) radiation [1]. To adapt to the extreme
conditions, microorganisms can produce a series of enzymes and display unique metabolic properties.
Therefore, Antarctic microorganisms play a crucial part in the field of biomass conversion and have
great potential applications, which have aroused more attention [1]. Sea ice is an important component
of Antarctic climate and ecosystems. The increased oxygen concentration associated with the high
salt concentration and low temperature of sea ice can induce the generation of reactive oxygen species
(ROS) [2]. To remove the influence of ROS, sea ice microorganisms have especial antioxidant defense
systems to protect against oxidative damage [2]. In the antioxidant defense systems, Glutathione
S-transferases (GSTs) play a vital role in the regulation of the detoxification and redox balance of
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ROS [3]. Additionally, GSTs can catalyze the combination of glutathione (GSH) and various active
electrophiles through affinity attacks and couplings [4]. GSTs have been widely described from
animals [5], plants [6], and microorganisms [7]. Recently, a GST with an optimum temperature of 40 ◦C
has been identified in the Antarctic psychrophilic bacteria Pseudoalteromonas sp. [8]. The crystallization
and X-ray crystallographic of another GST from Antarctic clam Laternula elliptica were also studied [9].
To date, little information is available concerning the structural characteristics and biochemical
properties of GSTs from Antarctic organisms.

Soluble GSTs can be divided into three categories: cytosolic, microsomal, and mitochondrial
GSTs [10]. GSTs are composed of an amino acid chain, which contains the C-terminal domains and
N-terminal domains (like-thioredoxin) [11]. The N-terminal domains with α-helixes and β-strands
can contribute to GSH binding sites, and the C-terminal domains can provide more amino acid
residues that interact with a variety of hydrophobic xenobiotics substrates. Besides, compared with
N-terminal domains, the C-terminals of GSTs exhibit more structural changes, which can recognize
and bind to a variety of known electrophilic compounds as GST substrates [12]. Currently, GSTs
have been widely used as biomarkers of toxicity [13] and in pharmaceutical industries to scavenge
organic hydroperoxides and ROS [14]. Furthermore, GSTs have been used as an indicator of certain
diseases, especially hepatic infection [15]. Therefore, GSTs have different biological activities due to the
differences of the conserved sequence regions, substrate specificity, and biochemical characterizations.

Antarctic sea ice microorganisms would be a novel source of antioxidant enzymes. Based
on our recent studies, several cold-active antioxidant proteins were separated from Antarctic
sea ice microorganisms and widely used in industrial sectors due to their excellent biochemical
properties [16,17]. Halomonas is the type genus of the family Halomonadaceae belonging to the class
Gammaproteobacteria. The genome sequence of Halomonas sp. strain KO116 isolated from sea surface [18]
and the physiological features of Halomonas lionensis from sea sediment have also been reported [19].
In this study, a novel gst gene (hsgst) was cloned from Antarctic sea ice bacterium Halomonas sp.
ANT108 and heterologous expressed in E. coli BL21. Furthermore, its biochemical properties and
oxidative resistance were investigated.

2. Results and Discussion

2.1. Identification of the hsgst Gene

Sequence analysis of the full-length hsgst gene revealed an open reading frame (ORF) of 603 bp,
encoding a protein of 200 amino acids with a predicted molecular weight of 21.76 kDa and the
theoretical isoelectric point (pI) of 5.79. The length of Taenia multiceps gst gene was 606 bp encoding
201 amino acids, which was close to the length of hsgst gene [20]. Besides, the length of gst gene
from Cydia pomonella and Sus scrofa were 648 bp encoding 215 amino acids (24.2 kDa) and 669 bp
encoding 222 amino acids (25.3 kDa), respectively, which were both slightly longer than the hsgst
gene [6]. The nucleotide sequence of the hsgst dene was deposited into GenBank database (accession
numbers MH719093).

Based on sequence alignments with the related GSTs, HsGST shared the highest identity (90.0%)
with HcGST from Halomonas campaniensis. The dimer interface of HsGST was comprised of L91, A92,
G95, L96, G99 and R133 (Figure 1). In general, soluble GSTs have two binding domains with the GSH
binding site (G-site) and the substrate binding site (H-site) [21]. The H-site (Y8, F9, V11, R14, V111, Y115,
N211 and G212) and G-site (Y8, R14, W42, K50, Q57, L58, P59, Q71, S72, E104 and D105) were identified in
the gst gene from Laternula elliptica [22]. Similarly, VpGSTp from Venerupis philippinarum also possessed
the H-site (Y8, F9, V11, R14, V103, Y107, N200 and G201) and G-site (Y8, R14, W39, K45, Q52, L53, P54, Q65,
S66, E96 and D97) [23]. However, in this study, only one H-site (Q98, M101, D102, A161 and Y164) was
found in the sequence of HsGST. Additionally, the N-terminal domain interface (L91, Q98, L153, I156,
T157, V160 and Y164) of HsGST was also identified in this sequence (Figure 1).
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Figure 1. Alignment of deduced amino acid sequences of HsGST with other GSTs. HsGST, Halomonas 
sp. ANT108 GST (GI: MH719093); HcGST, Halomonas campaniensis GST (GI: WP_088700156); HlGST, 
Halomonas lionensis GST (GI: WP_083025363); MlGST, Marinobacterium litorale GST (GI: 
WP_027854519); AeGST, Alkalilimnicola ehrlichii GST (GI: WP_011629671); NcGST, Nitrosomonas 
communis GST (GI: AKH37377);  EcGST, E. coli K12 GST (PDB ID: 3R2Q); SsGST, Sus scrofa GST (GI: 
NM214389) and CpGST, Cydia pomonella GST (GI: EU887533). Symbols: ●, dimer interface; ★, 
substrate binding pocket (H-site); ▲, N-terminal domain interface. 

2.2. Homology Modeling Analysis 

The 3D structure of HsGST showed that it consisted of 8 α-helixes and 4 β-strands (Figure 2A). 
For the validation of the structural model, 82.00% of the residues had an averaged 3D-1D score ≥ 0.2. 
The ERRAT program also showed an overall quality value of 94.27% for the 3D structure. These 
parameters demonstrated that the structural model of HsGST was well qualified. As can be seen in 
Figure 2B, the structural model of HsGST superimposed well with EcGST. The H-sites of HsGST and 

Figure 1. Alignment of deduced amino acid sequences of HsGST with other GSTs. HsGST, Halomonas
sp. ANT108 GST (GI: MH719093); HcGST, Halomonas campaniensis GST (GI: WP_088700156); HlGST,
Halomonas lionensis GST (GI: WP_083025363); MlGST, Marinobacterium litorale GST (GI: WP_027854519);
AeGST, Alkalilimnicola ehrlichii GST (GI: WP_011629671); NcGST, Nitrosomonas communis GST (GI:
AKH37377); EcGST, E. coli K12 GST (PDB ID: 3R2Q); SsGST, Sus scrofa GST (GI: NM214389) and CpGST,
Cydia pomonella GST (GI: EU887533). Symbols: •, dimer interface;8, substrate binding pocket (H-site);
N, N-terminal domain interface.

2.2. Homology Modeling Analysis

The 3D structure of HsGST showed that it consisted of 8 α-helixes and 4 β-strands (Figure 2A).
For the validation of the structural model, 82.00% of the residues had an averaged 3D-1D score ≥ 0.2.
The ERRAT program also showed an overall quality value of 94.27% for the 3D structure. These
parameters demonstrated that the structural model of HsGST was well qualified. As can be seen
in Figure 2B, the structural model of HsGST superimposed well with EcGST. The H-sites of HsGST
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and EcGST were also effectively located in close proximity (Figure 2B). EcGST (PDB ID: 3R2Q) was
a mesophilic GST from E. coli K12 encoded 202 amino acids, and the sequence identity of EcGST to
HsGST was 30% using BLASTp. In fact, there were differences in the frequencies of the amino acid
residues between the cold-adapted enzymes and the homologous mesophilic enzymes [24]. As shown
in Table 1, in the comparison with EcGST, HsGST possessed of a higher frequency of G (Gly), lower
frequency of P (Pro) and R (Arg), regarded as a structural characteristic of cold-adapted enzymes,
which endowed enzymes with increased conformational flexibility and low-temperature catalytic
competence [24].

Furthermore, electrostatic interactions were an important factor for maintaining the secondary
and tertiary structure in cold-adapted enzymes [25]. Compared to EcGST, HsGST exhibited reduced
electrostatic interactions, especially hydrogen bonds and salt bridges, resulting in a decrease in the
rigidity of the proteins, which were also obviously observed in other cold-adapted enzymes such as
dienelactone hydrolase [26] and glycosylase [27]. In addition, in the comparison with EcGST, HsGST
had less hydrophobic interactions, which might contribute to the increased structural flexibility and
thermolability of cold-adapted enzymes [26,28]. The increased structural flexibility could improve the
efficiency of substrates binding to the catalytic sites with high possibility, thereby reducing activation
energy and increasing substrates turnover rates [26].

Table 1. Comparison of structural adaptation features between HsGST and EcGST.

HsGST EcGST Expected Effect on HsGST

Electrostatic interactions

Protein stability
Salt bridges 1 7

Hydrogen bonds 165 272
Aromatic interactions 7 6
Cation-Pi interactions 5 4

Hydrophobic
interactions 159 180 Thermolability

G (Gly) 13 11

Flexibility

P (Pro) 10 13
R (Arg) 11 14

G substitution
(HsGST→EcGST)

G76→N74, G78→A76, G95→A95,
G97→A97, G110→Q111, G115→A116,

G124→R125, G147→K147,
G154→A154, G191→R191

P substitution
(EcGST→HsGST)

P64→L66, P84→A86, P114→Y113,
P172→F172, P199→F199, P200→E200

P substitution
(HsGST→EcGST) P142→V142, P170→V170, P175→C175 Stability
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Figure 2. 3D structure model of HsGST and structural superimposition with EcGST. (A) Cartoon 
representation of HsGST. The α-helices and β-strands are colored in blue and magenta, respectively. 
The catalytic triad residues are indicated as stick models colored in red. (B) The structural 
superposition of HsGST (cyan), EcGST (blue). The catalytic triad residues are indicated as stick 
models colored in yellow. 

2.3. Expression and Purification of rHsGST 

As shown in Figure 3 lane 3, the recombinant protein with an estimated molecular mass of 28 
kDa was expressed in E. coli BL21. The purified protein using nickel nitrilotriacetic acid (Ni-NTA) 
resins exhibited a single band in terms of sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) (Figure 3, lane 4). In addition, 2.18 mg protein of rHsGST was purified from the crude 
extract. The purification fold and yields of rHsGST were 3.62 and 27.75%, respectively. The specific 
activity of rHsGST was 254.20 nmol/min/mg, which was higher than the GST isolated from Liposcelis 
entomophila (183 nmol/min/mg) and lower than that isolated from L. bostrychophila (412 nmol/min/mg) 
[29]. 

 

Figure 3. Expression and purification analysis of HsGST. Lane 1: protein molecular weight marker; 
lane 2: crude extract from the BL21/pET-28a(+); lane 3: crude extract from the BL21/pET-28a(+)-HsGST 
with IPTG induction; lane 4: purified rHsGST with Ni-NTA column. 

Figure 2. 3D structure model of HsGST and structural superimposition with EcGST. (A) Cartoon
representation of HsGST. The α-helices and β-strands are colored in blue and magenta, respectively.
The catalytic triad residues are indicated as stick models colored in red. (B) The structural superposition
of HsGST (cyan), EcGST (blue). The catalytic triad residues are indicated as stick models colored
in yellow.

2.3. Expression and Purification of rHsGST

As shown in Figure 3 lane 3, the recombinant protein with an estimated molecular mass
of 28 kDa was expressed in E. coli BL21. The purified protein using nickel nitrilotriacetic acid
(Ni-NTA) resins exhibited a single band in terms of sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) (Figure 3, lane 4). In addition, 2.18 mg protein of rHsGST was purified
from the crude extract. The purification fold and yields of rHsGST were 3.62 and 27.75%, respectively.
The specific activity of rHsGST was 254.20 nmol/min/mg, which was higher than the GST isolated
from Liposcelis entomophila (183 nmol/min/mg) and lower than that isolated from L. bostrychophila
(412 nmol/min/mg) [29].
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Figure 3. Expression and purification analysis of HsGST. Lane 1: protein molecular weight marker;
lane 2: crude extract from the BL21/pET-28a(+); lane 3: crude extract from the BL21/pET-28a(+)-HsGST
with IPTG induction; lane 4: purified rHsGST with Ni-NTA column.
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2.4. Biochemical Characterizations of rHsGST

The optimum temperature of rHsGST was measured over a temperature range of 0–50 ◦C
(Figure 4A). rHsGST had the maximal activity at 25 ◦C and remained 41.67% of the maximal activity
even at 0 ◦C, while the enzyme was inactivated at 50 ◦C. However, the optimum temperature of the
GST from the Laternula elliptica [22] and GST from codling moth (Cydia pomonella) [30] were 35 ◦C and
50 ◦C, respectively. For the thermostability of rHsGST, the half-life of the enzyme was at 35 ◦C for
90 min, and rHsGST was completely inactivated after 1 h incubation at 45 ◦C (Figure 4B). According
to other reports, GSTs from Pseudoalteromonas sp. [8] and Monopterus albus [31] retained 50% and
90% of the maximal activity at 40 ◦C for 15 min, respectively. These results indicated that rHsGST
belonged to the cold-adapted enzyme, which was consistent with the results of homology modeling.
rHsGST showed the maximal activity at pH 7.5 (Figure 4C), while the optimum pH of GST from
Spodoptera exigua [32] and Locusta migratoria manilensis [33] was 6.0 and 8.0, respectively. Moreover,
rHsGST retained about 50% and 65% of its maximal activity at pH 6.5 and pH 8.5, respectively. Similar
results were also obtained in rRfGSTθ from black rockfish [34]. Consequently, it possessed good
activity in neutral and weakly alkaline conditions. The stability of rHsGST was studied at various pH
values from 5.0 to 9.0 (Figure 4D). The enzyme retained more than 60% of the maximal activity at pH
5.0–8.5. It illustrated that rHsGST had better stability over a wide pH range, which was similar with
the GST from the locust [33].
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Figure 4. Effects of temperatures and pH on the purified rHsGST activity. (A) The optimal temperature
was determined by measuring the activity at temperatures from 0 to 50 ◦C. (B) Effect of temperatures
on the stability of the purified rHsGST. The enzyme was incubated at 35 ◦C (�, black), 40 ◦C (•, red),
and 45 ◦C (N, blue) for 90 min. (C) The optimal pH was determined by measuring the activity at pH
from 5.0 to 9.0. (D) Effect of pH on the stability of the purified rHsGST. The enzyme was incubated at
25 ◦C for 1 h. The maximal activity was taken as 100%.



Mar. Drugs 2019, 17, 147 7 of 13

As shown in Figure 5, rHsGST exhibited more than 80% of its initial activity at 0.5–2 M
NaCl. However, the activity declined sharply at 2.5 M. These results illustrated that the rHsGST
was a salt-tolerant enzyme that could adapt to the Antarctic sea ice environment with a high salt
concentration. The activity of GST isolated from Pseudoalteromonas sp. ANT506 was lower than rHsGST,
which remained about 50% of the initial activity in the existence of 2.0 M NaCl [8].
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The effects of different reagents on rHsGST activity were also investigated (Table 2). The activity of
rHsGST was not detected in the presence of metal ions Ca2+, Ni2+, Cu2+ and Sn2+. On the contrary, the
activity of GST from Trichinella spiralis was promoted by Ni2+ [35]. Interestingly, Fe2+ could improve the
rHsGST activity, and H2O2 also kept the enzyme activity with 97.09%. rHsGST that was treated with
ethanol showed the strongest inhibitory effect, and the activity was only 29.03% of control. Besides, the
activity of rHsGST treated with SDS retained 54.84%, a similar result was also obtained in the recent
study of the TsGST from Trichinella spiralis [35].

Table 2. Effects of different reagents on the rHsGST activity.

Reagent Conc Relative Activity (%) Reagent Conc Relative Activity (%)

None 100.00 Ba2+ 5 mM 93.54 ± 2.90
K+ 5 mM 38.71 ± 3.22 Ca2+ 5 mM ND

Ni2+ 5 mM ND Mn2+ 5 mM 70.97 ± 3.54
Fe2+ 5 mM 148.38 ± 6.45 Ethanol 25% 29.03 ± 7.41
Zn2+ 5 mM 41.94 ± 1.61 H2O2 0.2% 97.09 ± 2.90
Mg2+ 5 mM 35.48 ± 7.41 SDS 5 mM 54.84 ± 6.45
Cu2+ 5 mM ND EDTA 5 mM 56.45 ± 4.83
Sn2+ 5 mM ND DTT 5 mM ND

Conc: Concentration; ND: activity was not detected.

2.5. Kinetics and Thermodynamics Parameters

Kinetic parameters were determined by linweaver-burk plot, Vmax of substrate
chlorodinitrobenzene (CDNB) and GSH were 714.29 and 243.90 nmol/min/mg, respectively
(Table 3). Compared with the results of LmGSTu1, the Vmax of CDNB in this study was much higher
than 250 nmol/min/mg [36]. Furthermore, the Km of GSH was 0.27 mM, which was lower than the
value of CDNB (2.86 mM). These consequences illustrated that rHsGST had a higher substrate affinity
for GSH than for CDNB.
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Table 3. Kinetic constants of the rHsGST.

Substrate CDNB GSH

Vmax (nmol/min/mg) 714.29 243.90
Km (mM) 2.86 0.27
kcat (1/s) 53.62 20.14

kcat/Km (1/s/mM) 18.75 74.59

Thermodynamic parameters were investigated using the CDNB as the substrate (Table 4).
Obviously, as the temperature increased from 10 ◦C to 30 ◦C, the values of ∆G appeared a growing
tendency. The values of ∆H were changed from 34.11 to 33.65 KJ/mol at temperatures from 10 to 30 ◦C.
Besides, the values of ∆S were −101.48, −101.63, −101.77, −101.91, and −102.05 J/mol, followed by
the temperature 10, 15, 20, 25, and 30 ◦C, respectively. The negative value of ∆S could increase the
order of the activated transition state of catalysis [37].

Table 4. Thermodynamic constants of the rHsGST.

Temperature 10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

∆G (KJ/mol) 62.85 63.35 63.82 64.15 64.59
∆H (KJ/mol) 34.11 34.05 33.99 33.77 33.65
∆S (J/mol) −101.48 −101.63 −101.77 −101.91 −102.05

T × ∆S
(KJ/mol) −28.73 −29.29 −29.83 −30.38 −30.94

2.6. Disk Diffusion Assay

It is known that H2O2 can cause oxidative stress that may induce cell dysfunction [38]. As can be
seen from Figure 6, the clearance zones in the recombinant bacteria plate were significantly smaller
than those of controls (p < 0.05). This result indicated that rHsGST had an important antioxidant
effect on helping living tissues to overcome the oxidative stress caused by H2O2. Similarly, GSTs from
Haliotis discus discus and Apis cerana cerana could also protect cells against oxidative stress produced by
H2O2 [39,40].
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Figure 6. Disk diffusion assay against E. coli BL21, BL21/pET-28a(+) and BL21/pET-28a(+)-HsGST.
(A) The clearance zone diameters (cm) were measured in the plates with E. coli BL21, BL21/pET-28a(+)
and BL21/pET-28a(+)-HsGST after oxidative stress with H2O2. (B) The clearance zone diameters of
BL21 (black), BL21/pET-28a(+) (red) and BL21/pET-28a(+)-HsGST (blue) were displayed in a bar graph
form. Data are presented as mean (n = 3) ± SD. * p < 0.05, representing a significant difference from
the control.
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3. Materials and Methods

3.1. Strains and Materials

Antarctic sea ice bacterial samples (68◦ 30′ E, 65◦ 00′ S) were cultured in 2216E medium at the
logarithmic growth phase, then the culture solution was extracted and streaked into a solid medium
by inoculating loop. The medium was then cultured at 12 ◦C for 72 h to pick up a single colony, which
was identified as Halomonas sp. according to the sequence analysis of 16S rRNA genes (accession
number: MK494178). The isolated strain had an optimum growth temperature of 10–12 ◦C. Plasmid
vector pET-28a(+) and receptor E. coli BL21 were maintained by our laboratory. T4 DNA ligase, BamHI
and HindIII and SanPrep column DNA gel recovery kit were purchased from Takara Biotechnology
(Dalian) Co., Ltd (Beijing, China).

3.2. Identification of hsgst Gene

Using high-throughput technologies to sequence and annotate the genome of Halomonas sp.
ANT108 (data not shown). The sequencing of full-length hsgst gene was amplified by PCR
applying by the forward primers 5′-ATAGGATCCATGCAGC TCTATTTAA-3′ and the reverse
primer 5′-AGTAAGCTTGTTCAAACGTGG TAAG-3′ (the BamHI and HindIII sites were underlined,
respectively) based on its genome sequence. The complete amino acid sequences of the HsGST were
obtained through an ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Multiple sequence
alignments were performed using the Bioedit program.

3.3. Analysis of HsGST

The 3D structure model of HsGST was established using the SWISS-MODEL server and verified
using SAVES v5.0 (http://servicesn.mbi.ucla.edu/SAVES/) (University of California, Los Angeles,
CA, USA). The visualization of homology modeling was performed using PyMOL software (Version
No.2.2.0, DeLano Scientific LLC, CA, USA). Meanwhile, salt bridges were predicted to use ESBRI
(Evaluating the Salt Bridges in Proteins). Besides, protein intramolecular interactions were predicted
by the Protein Interactions Calculator (PIC) Online website (http://pic.mbu.iisc.ernet.in/job.html).

3.4. Expression and Purification of hsgst Gene in E. coli

The hsgst gene was inserted into the plasmid of the pET-28a(+) vector. Then, the recombinant
plasmid was transferred into the receptor E. coli BL21. The positive strain was verified by PCR and
inoculated in LB medium supplemented with 0.1 mg/mL kanamycin (Kana). Afterwards, 1 mM
isopropyl-β-d-thiogalactoside (IPTG) was added to induce the hsgst gene expression, and the 1 L
cultures were pro-longed for 8 h at 25 ◦C. The induced cells were centrifuged and disrupted by
sonication (JY96-IIN, Shanghai, China) to obtain inclusion bodies. Then the inclusion bodies were
washed with PBS (pH 8.0) and treated with 8 M urea at 25 ◦C for 1 h. The mixture was centrifuged at
7500 rpm for 15 min. The supernatant was diluted for 30 times by adding PBS (pH 8.0) at 25 ◦C for 2 h,
which was the procedure of the rHsGST refolding. The protein solution was centrifuged at 12,000 rpm
for 15 min. The supernatant was the crude extract of rHsGST. The protein was purified using Ni-NTA
resins affinity chromatography (GE Healthcare, Uppsala, Sweden). The protein molecular weight and
purity of the rHsGST were determined by SDS-PAGE with 12.0% polyacrylamide gels.

3.5. Assay of rHsGST Activity and Protein Concentration

GST activity was determined according to the conjugation of CDNB and GSH in the presence of
the enzyme [12]. One unit of enzyme activity was defined as the quantity of CDNB conjugated product
catalyzed synthetically per milligram per minute at 25 ◦C. Protein concentrations were measured by
the method of Bradford [41].

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://servicesn.mbi.ucla.edu/SAVES/
http://pic.mbu.iisc. ernet.in/job.html
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3.6. Biochemical Characteristics of rHsGST

The optimum temperature of the rHsGST was determined at different temperatures (0–50 ◦C) by
the standard enzyme assay. To evaluate the thermostability of rHsGST, the enzyme was incubated
at 35, 40, and 45 ◦C for 90 min, respectively. The optimum pH the rHsGST was measured at 25 ◦C
and the following buffers were 0.1 mol/L acetate buffer (pH 5.0–5.8), 0.1 mol/L Na2HPO4/Na2HPO4

(pH 5.8–8.0), 0.1 mol/L Tris-HCl (pH 8.0–9.0). The stability of rHsGST at different pH was determined
by incubating the enzyme in the buffers mentioned above at 25 ◦C for 1 h and the remaining activity
was measured. Furthermore, the effect of NaCl on the rHsGST was evaluated by adding NaCl (0–3.0 M)
and incubated at 25 ◦C for 1 h. The remaining activity was measured by means of the standard enzyme
assay. In order to study the effects of various reagents on the rHsGST activity, the protein solution
and different reagents solution were firstly mixed for 1 h at 25 ◦C, and then the remaining activity was
measured by means of the standard enzyme assays.

3.7. Kinetics and Thermodynamics Parameters

Kinetic parameters were determined using five different concentrations of CDNB (0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0 and 4.5 mM) and GSH (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 mM) at 25 ◦C,
respectively. Km and Vmax were measured using the Micchaelis-Menten equation [42]. Through the
determination of kinetic, the kcat was obtained. The kcat was determined at 10–30 ◦C and the line was
defined with lnkcat and 1/T. Then, the ∆G, ∆H, and ∆S were calculated, respectively [42].

3.8. Disk Diffusion Assay

To compare the survival efficiency of untransformed BL21, BL21/pET-28a(+) and recombinant
BL21/pET-28a(+)-HsGST, a disk diffusion assay was performed as described previously [43].
The IPTG-induced bacterial cultures were uniformly spread on LB agar plates, and two filter paper
disks (diameter 3 mm) were placed equidistant on each agar plate. Then, 1.5 and 3 µL of 30% H2O2

were added to the filter paper disks, respectively. The treated plates were incubated at 37 ◦C for 12 h,
and the diameters of the clearance zone were measured.

4. Conclusions

A novel hsgst gene from Halomonas sp. ANT108 was cloned, expressed, and characterized in the
present study. Furthermore, HsGST had the structural characteristics of cold-adapted enzymes by
homology modeling. After purification, rHsGST exhibited different catalytic capabilities compared
with other GSTs, such as the optimum temperature, thermolability, and high tolerance in the presence of
H2O2 and high salt concentration. Moreover, E. coli cells overexpressing hsgst displayed the protective
effects against oxidative stress. Although there are already numerous GSTs available in the market, the
high catalytic efficiency and oxidative resistance at low temperature of rHsGST may make it a potential
candidate as an antioxidant in low temperature health foods such as marine surimi, protamine, and
low temperature meat products.
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