Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = cationic arginine-rich peptides (CARPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5103 KiB  
Article
Novel Poly-Arginine Peptide R18D Reduces α-Synuclein Aggregation and Uptake of α-Synuclein Seeds in Cortical Neurons
by Emma C. Robinson, Anastazja M. Gorecki, Samuel R. Pesce, Vaishali Bagda, Ryan S. Anderton and Bruno P. Meloni
Biomedicines 2025, 13(1), 122; https://doi.org/10.3390/biomedicines13010122 - 7 Jan 2025
Viewed by 1196
Abstract
Background/Objectives: The role of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides [...] Read more.
Background/Objectives: The role of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation. This study characterised both intracellular α-syn aggregation and α-syn uptake in cortical neurons in vitro. Thereafter, this study examined the therapeutic potential of the neuroprotective CARP, R18D (18-mer of D-arginine), to prevent the aforementioned PD pathogenic processes through a cell-free thioflavin-T (ThT) assay and in cortical neurons. Methods: To induce intracellular α-syn aggregation, rat primary cortical neurons were exposed to α-syn seed (0.14 μM) for 2 h to allow uptake of the protein, followed by R18D treatment (0.0625, 0.125, 0.25, 0.5 μM), and a subsequent measurement of α-syn aggregates 48 h later using a homogenous time-resolved fluorescence (HTRF) assay. To assess neuronal uptake, α-syn seeds were covalently labelled with an Alexa-Fluor 488 fluorescent tag, pre-incubated with R18D (0.125, 0.25, 0.5 μM), and then exposed to cortical neurons for 24 h and assessed via confocal microscopy. Results: It was demonstrated that R18D significantly reduced both intracellular α-syn aggregation and α-syn seed uptake in neurons by 37.8% and 77.7%, respectively. Also, R18D reduced the aggregation of α-syn monomers in the cell-free assay. Conclusions: These findings highlight the therapeutic potential of R18D to inhibit key α-syn pathological processes and PD progression. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

20 pages, 10282 KiB  
Article
Molecular Integrative Study on Inhibitory Effects of Pentapeptides on Polymerization and Cell Toxicity of Amyloid-β Peptide (1–42)
by Lianmeng Ye, Nuela Manka’a Che Ajuyo, Zhongyun Wu, Nan Yuan, Zhengpan Xiao, Wenyu Gu, Jiazheng Zhao, Yechun Pei, Yi Min and Dayong Wang
Curr. Issues Mol. Biol. 2024, 46(9), 10160-10179; https://doi.org/10.3390/cimb46090606 - 14 Sep 2024
Viewed by 1501
Abstract
Alzheimer’s Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use [...] Read more.
Alzheimer’s Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use of cationic arginine-rich peptides (CARPs) in targeting protein aggregations has been on the rise. Also, the process of peptide development employing computational approaches has attracted a lot of attention recently. Using a structure database containing pentapeptides made from 20 L-α amino acids, we employed molecular docking to sort pentapeptides that can bind to Aβ42, then performed molecular dynamics (MD) analyses, including analysis of the binding stability, interaction energy, and binding free energy to screen ligands. Transmission electron microscopy (TEM), circular dichroism (CD), thioflavin T (ThT) fluorescence detection of Aβ42 polymerization, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the flow cytometry of reactive oxygen species (ROS) were carried out to evaluate the influence of pentapeptides on the aggregation and cell toxicity of Aβ42. Two pentapeptides (TRRRR and ARRGR) were found to have strong effects on inhibiting the aggregation of Aβ42 and reducing the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, reactive oxygen species (ROS) production, and apoptosis. Full article
Show Figures

Figure 1

14 pages, 2663 KiB  
Article
The Poly-Arginine Peptide R18D Interferes with the Internalisation of α-Synuclein Pre-Formed Fibrils in STC-1 Enteroendocrine Cells
by Anastazja M. Gorecki, Holly Spencer, Bruno P. Meloni and Ryan S. Anderton
Biomedicines 2023, 11(8), 2089; https://doi.org/10.3390/biomedicines11082089 - 25 Jul 2023
Cited by 2 | Viewed by 2912
Abstract
In Parkinson’s disease (PD), gut inflammation is hypothesised to contribute to α-synuclein aggregation, but gastrointestinal α-synuclein expression is poorly characterised. Cationic arginine-rich peptides (CARPs) are an emerging therapeutic option that exerts various neuroprotective effects and may target the transmission of protein aggregates. This [...] Read more.
In Parkinson’s disease (PD), gut inflammation is hypothesised to contribute to α-synuclein aggregation, but gastrointestinal α-synuclein expression is poorly characterised. Cationic arginine-rich peptides (CARPs) are an emerging therapeutic option that exerts various neuroprotective effects and may target the transmission of protein aggregates. This study aimed to investigate endogenous α-synuclein expression in enteroendocrine STC-1 cells and the potential of the CARP, R18D (18-mer of D-arginine), to prevent internalisation of pre-formed α-synuclein fibrils (PFFs) in enteroendocrine cells in vitro. Through confocal microscopy, the immunoreactivity of full-length α-synuclein and the serine-129 phosphorylated form (pS129) was investigated in STC-1 (mouse enteroendocrine) cells. Thereafter, STC-1 cells were exposed to PFFs tagged with Alexa-Fluor 488 (PFF-488) for 2 and 24 h and R18D-FITC for 10 min. After confirming the uptake of both PFFs and R18D-FITC through fluorescent microscopy, STC-1 cells were pre-treated with R18D (5 or 10 μM) for 10 min prior to 2 h of PFF-488 exposure. Immunoreactivity for endogenous α-synuclein and pS129 was evident in STC-1 cells, with prominent pS129 staining along cytoplasmic processes and in perinuclear areas. STC-1 cells internalised PFFs, confirmed through co-localisation of PFF-488 and human-specific α-synuclein immunoreactivity. R18D-FITC entered STC-1 cells within 10 min and pre-treatment of STC-1 cells with R18D interfered with PFF uptake. The endogenous presence of α-synuclein in enteroendocrine cells, coupled with their rapid uptake of PFFs, demonstrates a potential for pathogenic spread of α-synuclein aggregates in the gut. R18D is a novel therapeutic approach to reduce the intercellular transmission of α-synuclein pathology. Full article
Show Figures

Figure 1

17 pages, 2317 KiB  
Article
Poly-arginine-18 (R18) Confers Neuroprotection through Glutamate Receptor Modulation, Intracellular Calcium Reduction, and Preservation of Mitochondrial Function
by Gabriella MacDougall, Ryan S. Anderton, Amy Trimble, Frank L. Mastaglia, Neville W. Knuckey and Bruno P. Meloni
Molecules 2020, 25(13), 2977; https://doi.org/10.3390/molecules25132977 - 29 Jun 2020
Cited by 5 | Viewed by 3871
Abstract
Recent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 [...] Read more.
Recent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels after inhibition of endoplasmic reticulum calcium uptake by thapsigargin. The results indicate that R18 significantly reduces calcium influx by suppressing iGluR overactivation, and results in preservation of mitochondrial membrane potential (ΔΨm) and ATP production, and reduced ROS generation. R18 also protected cortical neurons against thapsigargin-induced neurotoxicity, which indicates that the peptide helps maintain neuronal survival when intracellular calcium levels are elevated. Taken together, these findings provide important insight into the mechanisms of action of R18, supporting its potential application as a neuroprotective therapeutic for acute and chronic neurological disorders. Full article
(This article belongs to the Collection Molecular Medicine)
Show Figures

Graphical abstract

26 pages, 347 KiB  
Review
Perinatal Hypoxic-Ischemic Encephalopathy and Neuroprotective Peptide Therapies: A Case for Cationic Arginine-Rich Peptides (CARPs)
by Adam B. Edwards, Ryan S. Anderton, Neville W. Knuckey and Bruno P. Meloni
Brain Sci. 2018, 8(8), 147; https://doi.org/10.3390/brainsci8080147 - 7 Aug 2018
Cited by 25 | Viewed by 6627
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is [...] Read more.
Perinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is only used for term infants (>36 weeks gestation) in tertiary hospitals and improves outcomes in only 30% of patients. For these reasons, a more effective and easily administrable pharmacological therapeutic agent, that can be used in combination with hypothermia or alone when hypothermia cannot be applied, is urgently needed to treat pre-term (≤36 weeks gestation) and term infants suffering HIE. Several recent studies have demonstrated that cationic arginine-rich peptides (CARPs), which include many cell-penetrating peptides [CPPs; e.g., transactivator of transcription (TAT) and poly-arginine-9 (R9; 9-mer of arginine)], possess intrinsic neuroprotective properties. For example, we have demonstrated that poly-arginine-18 (R18; 18-mer of arginine) and its D-enantiomer (R18D) are neuroprotective in vitro following neuronal excitotoxicity, and in vivo following perinatal hypoxia-ischemia (HI). In this paper, we review studies that have used CARPs and other peptides, including putative neuroprotective peptides fused to TAT, in animal models of perinatal HIE. We critically evaluate the evidence that supports our hypothesis that CARP neuroprotection is mediated by peptide arginine content and positive charge and that CARPs represent a novel potential therapeutic for HIE. Full article
(This article belongs to the Special Issue The Treatment of Neonatal Hypoxic-Ischemic Encephalopathy)
Back to TopTop