Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = canopy fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
24 pages, 32355 KiB  
Article
Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands
by Bruce Markman, H. Scott Butterfield, Janet Franklin, Lloyd Coulter, Moses Katkowski and Daniel Sousa
Remote Sens. 2025, 17(14), 2352; https://doi.org/10.3390/rs17142352 - 9 Jul 2025
Viewed by 541
Abstract
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire [...] Read more.
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire fuels. Measuring the RDM using traditional methods is labor-intensive, costly, and subjective, making consistent sampling challenging. Previous studies have assessed the use of multispectral remote sensing to estimate the RDM, but with limited success across space and time. The existing approaches may be improved through the use of spectroscopic (hyperspectral) sensors, capable of capturing the cellulose and lignin present in dry grass, as well as Unmanned Aerial Vehicle (UAV)-mounted Light Detection and Ranging (LiDAR) sensors, capable of capturing centimeter-scale 3D vegetation structures. Here, we evaluate the relationships between the RDM and spectral and LiDAR data across the Jack and Laura Dangermond Preserve (Santa Barbara County, CA, USA), which uses grazing and prescribed fire for rangeland management. The spectral indices did not correlate with the RDM (R2 < 0.1), likely due to complete areal coverage with dense grass. The LiDAR canopy height models performed better for all the samples (R2 = 0.37), with much stronger performance (R2 = 0.81) when using a stratified model to predict the RDM in plots with predominantly standing (as opposed to laying) vegetation. This study demonstrates the potential of UAV LiDAR for direct RDM quantification where vegetation is standing upright, which could help improve RDM mapping and management for rangelands in California and beyond. Full article
Show Figures

Figure 1

25 pages, 10286 KiB  
Article
Plant Community Restoration Efforts in Degraded Blufftop Parkland in Southeastern Minnesota, USA
by Neal D. Mundahl, Austin M. Yantes and John Howard
Land 2025, 14(7), 1326; https://doi.org/10.3390/land14071326 - 22 Jun 2025
Viewed by 550
Abstract
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn [...] Read more.
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn (Rhamnus cathartica) and honeysuckles (Lonicera spp.). Habitat restoration was initiated in the early 1990s, but management gaps and a seedbank of invasives compromised initial efforts. More consistent and sustainable restoration activities since 2016 have included cutting and chemical treatment of invasives, managed goat browsing, targeted reseeding and plug planting with native species, and more regular prescribed fires. Throughout the restoration process, we assessed changes in buckthorn densities in response to various management practices, assessed the restored savanna tree community, and documented the presence of blooming plants across all park habitats. Manual clearing of woody invasives and repeated goat browsing significantly reduced buckthorn and honeysuckle abundance in prairies and savannas. Park plant communities responded to the combination of management strategies with reduced densities of woody invasives and expanding diversity (currently >220 species present) of forbs and grasses, including a large and growing population of state-threatened Great Indian Plantain (Arnoglossum reniforme). Prescribed fires have benefitted prairies but have done little to improve savanna plant communities, due largely to excessive tree canopy coverage causing a lack of burnable fuels (i.e., dry forbs and grasses). Improved partnerships between landowners and dedicated volunteers are working to expand restoration efforts to include other portions of the park and adjacent woodlands. Full article
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Fuels Treatments and Tending Reduce Simulated Wildfire Impacts in Sequoia sempervirens Under Single-Tree and Group Selection
by Jade D. Wilder, Keith A. Shuttle, Jeffrey M. Kane and John-Pascal Berrill
Forests 2025, 16(6), 1000; https://doi.org/10.3390/f16061000 - 13 Jun 2025
Viewed by 470
Abstract
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire [...] Read more.
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire behavior over a century in stands dominated by coast redwood (Sequoia sempervirens (Lamb. ex. D. Don) Endl.) on California’s north coast. We used the fire and fuels extension to the forest vegetation simulator (FFE-FVS) to compare group selection (GS) to single-tree selection silviculture with either low-density (LD) or high-density (HD) retention on a 20-year harvest return interval. These three approaches were paired with six options involving vegetation management (i.e., hardwood control or pre-commercial thinning (PCT)) with and without fuels treatments (i.e., prescribed fire or pile burning), or no subsequent vegetation or fuel treatment applied after GS, HD, or LD silviculture. Fuel treatment involving prescribed fire reduced hazardous fuel loading but lowered stand density and hence productivity. Hardwood control followed by prescribed fire mitigated potential wildfire behavior and promoted dominance of merchantable conifers. PCT of small young trees regenerating after selection harvests, followed by piling and burning of these cut trees, sustained timber production while reducing potential wildfire behavior by approximately 40% relative to selection silviculture without vegetation/fuel management, which exhibited the worst potential wildfire behavior. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

19 pages, 3090 KiB  
Article
Effect of Forest Species Canopy on the Accumulation of Toxic Metals in the Soil Within and Around Macedonia Airport, Northern Greece
by Ioannis Mousios, Marianthi Tsakaldimi, Evangelia Gkini, Theocharis Chatzistathis and Petros Ganatsas
Urban Sci. 2025, 9(6), 191; https://doi.org/10.3390/urbansci9060191 - 27 May 2025
Viewed by 615
Abstract
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and [...] Read more.
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and lubricants, as well as waste from aircraft and ground vehicles. These substances often seep into the soil, leading to the accumulation of toxic elements. However, due to security reasons, there is a great scarcity of real data on the impact of airport operations on ecosystems and the role trees could play in pollutant limitation. Thus, the aim of this study was to determine whether airport operations have toxic effects on soils within and around Macedonia Airport, Thessaloniki, Northern Greece, by determining the concentrations of potentially toxic elements (Cu, Ni, Pb, Mn, Fe, Co, Cr, Cd, and Zn) in soil samples taken within the airport and near the airport. Furthermore, this study aimed to investigate the effect of the canopies of forest species on the accumulation of toxic metals in the soil inside the airport and in the peripheral zone. The results show that, overall, no important pollution was detected in the soil of the Thessaloniki Airport, Northern Greece, both inside and outside the airport area. Some differences were observed in the content of toxic metals studied between the samples taken inside and outside the airport, and some effects of tree canopy were noted. However, all values were lower than the defined permissible limits according to international standards (except for iron). It is important, however, to perform regular re-checking of soil quality with new samples in order to prevent soil contamination and mitigate any contamination found. Full article
Show Figures

Figure 1

17 pages, 19313 KiB  
Article
Determining a Safe Distance Zone for Firefighters Using a High-Resolution Global Canopy Height Dataset—A Case in Türkiye
by Zennure Uçar
Forests 2025, 16(4), 709; https://doi.org/10.3390/f16040709 - 21 Apr 2025
Viewed by 602
Abstract
Safety zones protect firefighters from bodily injury and death caused by exposure to dangerous heat levels. These zones are defined by maintaining a safe distance from combustible fuels, a safe separation distance (SSD) derived from flame height. This study aimed to determine safety [...] Read more.
Safety zones protect firefighters from bodily injury and death caused by exposure to dangerous heat levels. These zones are defined by maintaining a safe distance from combustible fuels, a safe separation distance (SSD) derived from flame height. This study aimed to determine safety zones, integrating an existing automated identification-of-safety-zone model with vegetation height derived from a freely available high-resolution global canopy height dataset for Manavgat Forest Management Directorate (FMD) in Türkiye. Flame height, terrain slope, size of a safety zone, and distance to the closest road were also used as input in this model. The results indicated that vegetation height from high-resolution global canopy height offered promising results for determining potential safety zones (SZs) associated with SSD. Integrating the global canopy height dataset into the existing model could assist in determining the safety zone in the absence of lidar. Thus, this spatial model would provide a framework for decision-makers to develop fire prevention and suppression strategies for higher fire risk areas, especially before and during a fire. Full article
Show Figures

Figure 1

13 pages, 6291 KiB  
Article
Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model
by Masih Eghdami, Pedro A. Jiménez y Muñoz and Amy DeCastro
Fire 2025, 8(4), 135; https://doi.org/10.3390/fire8040135 - 31 Mar 2025
Viewed by 757
Abstract
Accurate wildfire spread modeling critically depends on the representation of wind dynamics, which vary with terrain, land cover characteristics, and height above ground. Many fire spread models are often coupled with coarse atmospheric grids that cannot explicitly resolve the vertical variation of wind [...] Read more.
Accurate wildfire spread modeling critically depends on the representation of wind dynamics, which vary with terrain, land cover characteristics, and height above ground. Many fire spread models are often coupled with coarse atmospheric grids that cannot explicitly resolve the vertical variation of wind near flame heights. Rothermel’s fire spread model, a widely used parameterization, relies on midflame wind speed to calculate the fire rate of spread. In coupled fire atmosphere models such as the Community Fire Behavior Model (CFBM), users are required to specify the midflame height before running a fire spread simulation. This study evaluates the use of logarithmic interpolation wind adjustment factors (WAF) for improving midflame wind speed estimates, which are critical for the Rothermel model. We compare the fixed wind height approach that is currently used in CFBM with WAF-derived winds for unsheltered and sheltered surface fire spread. For the first time in this context, these simulations are validated against satellite and ground-based observations of fire perimeters. The results show that WAF implementation improves fire perimeter predictions for both grass and canopy fires while reducing the overestimation of fire spread. Moreover, this approach solely depends on the fuel bed depth and estimation of canopy density, enhancing operational efficiency by eliminating the need for users to specify a wind height for simulations. Full article
Show Figures

Figure 1

16 pages, 968 KiB  
Article
Increasing Electric Vehicle Charger Availability with a Mobile, Self-Contained Charging Station
by Robert Serrano, Arifa Sultana, Declan Kavanaugh and Hongjie Wang
Sustainability 2025, 17(6), 2767; https://doi.org/10.3390/su17062767 - 20 Mar 2025
Viewed by 1581
Abstract
As the transition to sustainable transportation has accelerated with the rise of electric vehicles (EVs), ensuring drivers have access to charging to maximize the electric miles driven is critical to lowering carbon emissions in the transportation sector. Limited charging station capacity and poor [...] Read more.
As the transition to sustainable transportation has accelerated with the rise of electric vehicles (EVs), ensuring drivers have access to charging to maximize the electric miles driven is critical to lowering carbon emissions in the transportation sector. Limited charging station capacity and poor reliability, especially during peak travel times, long-distance travels, holidays, and events, have hindered the adoption of EVs and threaten the progress toward reducing greenhouse gas emissions. Adaptive, flexible deployment strategies combined with innovative approaches integrating mobility and renewable energy are essential to address these systemic challenges and bridge the current infrastructure gap. To address these challenges, this study proposes a self-contained, mobile charging station (MCS). Designed for rapid deployment, the proposed MCS increases charging capacity during demand surges while minimizing reliance on fossil fuels. The feasibility of integrating a solar canopy with this MCS to further reduce carbon emissions is also studied. This study weighed the pros and cons of differing cell chemistries, sized the battery using data provided by the United States’ largest public CPO, and discussed the feasibility of a solar canopy for off-grid energy. Full article
(This article belongs to the Special Issue Effects of CO2 Emissions Control on Transportation and Its Energy Use)
Show Figures

Figure 1

15 pages, 3039 KiB  
Article
Anthropogenic Impacts on Bark and Ambrosia Beetle Assemblages in Tropical Montane Forest in Northern Borneo
by Evahtira Gunggot, Roger A. Beaver, Jonathan Jimmey Lucas, Sandra Geogina George, Anastasia Rasiah, Wilson V. C. Wong, Maria Lourdes T. Lardizabal and Naoto Kamata
Insects 2025, 16(2), 121; https://doi.org/10.3390/insects16020121 - 26 Jan 2025
Viewed by 1026
Abstract
Anthropogenic disturbances, such as forest conversion, have a profound impact on species distributions and biodiversity in tropical forests. This study aimed to determine the diversity and distribution of bark and ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) across three forest types: Primary Forest (PF), [...] Read more.
Anthropogenic disturbances, such as forest conversion, have a profound impact on species distributions and biodiversity in tropical forests. This study aimed to determine the diversity and distribution of bark and ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) across three forest types: Primary Forest (PF), Disturbed Forest (DF), and Rubber Plantation (RP) in southern Sabah, Malaysia. We analyzed biweekly data obtained from ethanol-baited traps over three years, from April 2017 to May 2020, which included 7257 individuals from 154 species. The dominant species remained the same across all forest types. However, species composition was highly stochastic and unpredictable between forest types. The abundance and number of species were highest in RP but lowest in DF. Indigenous forest use in DF mostly for fuel likely reduced the resources for the beetles. Open canopy structure in RP probably increased the number of flying beetles. Although adjacent to PF, RP displayed a distinct species composition predominantly associated with rubber trees. These findings underscore the anthropogenic impact on beetle assemblages due to forest use and emphasize the need for sustainable forest management practices to prevent biodiversity loss and maintain ecosystem stability. Full article
Show Figures

Figure 1

19 pages, 6455 KiB  
Article
Assessment of Mango Canopy Water Content Through the Fusion of Multispectral Unmanned Aerial Vehicle (UAV) and Sentinel-2 Remote Sensing Data
by Jinlong Liu, Jing Huang, Mengjuan Wu, Tengda Qin, Haoyi Jia, Shaozheng Hao, Jia Jin, Yuqing Huang and Nathsuda Pumijumnong
Forests 2025, 16(1), 167; https://doi.org/10.3390/f16010167 - 17 Jan 2025
Cited by 3 | Viewed by 1068
Abstract
This study proposes an Additive Wavelet Transform (AWT)-based method to fuse Multispectral UAV (MS UAV, 5 cm resolution) and Sentinel-2 satellite imagery (10–20 m resolution), generating 5 cm resolution fused images with a focus on near-infrared and shortwave infrared bands to enhance the [...] Read more.
This study proposes an Additive Wavelet Transform (AWT)-based method to fuse Multispectral UAV (MS UAV, 5 cm resolution) and Sentinel-2 satellite imagery (10–20 m resolution), generating 5 cm resolution fused images with a focus on near-infrared and shortwave infrared bands to enhance the accuracy of mango canopy water content monitoring. The fused Sentinel-2 and MS UAV data were validated and calibrated using field-collected hyperspectral data to construct vegetation indices, which were then used with five machine learning (ML) models to estimate Fuel Moisture Content (FMC), Equivalent Water Thickness (EWT), and canopy water content (CWC). The results indicate that the addition of fused Sentinel-2 data significantly improved the estimation accuracy of all parameters compared to using MS UAV data alone, with the Genetic Algorithm Backpropagation Neural Network (GABP) model performing best (R2 = 0.745, 0.859, and 0.702 for FMC, EWT, and CWC, respectively), achieving R2 improvements of 0.066, 0.179, and 0.210. Slope, canopy coverage, and human activities were identified as key factors influencing the spatial variability of FMC, EWT, and CWC, with CWC being the most sensitive to environmental changes, providing a reliable representation of mango canopy water status. Full article
Show Figures

Figure 1

24 pages, 7498 KiB  
Article
Fuel Load Models for Different Tree Vegetation Types in Sichuan Province Based on Machine Learning
by Hongrong Wang, Haoquan Chen, Hanmin Sheng, Kai Chen, Chen Dong and Zhiqiang Min
Forests 2025, 16(1), 42; https://doi.org/10.3390/f16010042 - 29 Dec 2024
Viewed by 902
Abstract
(1) Objective: To improve forest fire prevention, this study provides a reference for forest fire risk assessment in Sichuan Province. (2) Methods: This research focuses on various forest vegetation types in Sichuan Province. Given data from 6848 sample plots, five machine learning models—random [...] Read more.
(1) Objective: To improve forest fire prevention, this study provides a reference for forest fire risk assessment in Sichuan Province. (2) Methods: This research focuses on various forest vegetation types in Sichuan Province. Given data from 6848 sample plots, five machine learning models—random forest, extreme gradient boosting (XGBoost), k-nearest neighbors, support vector machine, and stacking ensemble (Stacking)—were employed. Bayesian optimization was utilized for hyperparameter tuning, resulting in machine learning models for predicting forest fuel loads (FLs) across five different vegetation types. (3) Results: The FL model incorporates not only vegetation characteristics but also site conditions and climate data. Feature importance analysis indicated that structural factors (e.g., canopy closure, diameter at breast height, and tree height) dominated in cold broadleaf, subtropical broadleaf, and subtropical mixed forests, while climate factors (e.g., mean annual temperature and temperature seasonality) were more influential in cold coniferous and subtropical coniferous forests. Machine learning-based FL models outperform the multiple stepwise regression model in both fitting ability and prediction accuracy. The XGBoost model performed best for cold coniferous, cold broadleaf, subtropical broadleaf, and subtropical mixed forests, with coefficient of determination (R2) values of 0.79, 0.85, 0.81, and 0.83, respectively. The Stacking model excelled in subtropical coniferous forests, achieving an R2 value of 0.82. (4) Conclusions: This study establishes a theoretical foundation for predicting forest fuel capacity in Sichuan Province. It is recommended that the XGBoost model be applied to predict fuel loads (FLs) in cold coniferous forests, cold broadleaf forests, subtropical broadleaf forests, and subtropical mixed forests, while the Stacking model is suggested for predicting FLs in subtropical coniferous forests. Furthermore, this research offers theoretical support for forest fuel management, forest fire risk assessment, and forest fire prevention and control in Sichuan Province. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 4303 KiB  
Article
Evaluating Domestic Herbivores for Vegetation Structure Management in Transitional Woodland–Shrubland Systems
by Inês Ribeiro, Tiago Domingos, Davy McCracken and Vânia Proença
Forests 2024, 15(12), 2258; https://doi.org/10.3390/f15122258 - 23 Dec 2024
Cited by 1 | Viewed by 1670
Abstract
Mediterranean landscapes are shaped by natural disturbances such as herbivory and fire that regulate vegetation structure and fuel loads. As a result of the cessation of traditional agricultural practices, land abandonment is a widespread phenomenon in these landscapes, leading to shrub encroachment and [...] Read more.
Mediterranean landscapes are shaped by natural disturbances such as herbivory and fire that regulate vegetation structure and fuel loads. As a result of the cessation of traditional agricultural practices, land abandonment is a widespread phenomenon in these landscapes, leading to shrub encroachment and heightened fire hazard. This study reports the effects of grazing by domestic herbivores on vegetation structure in transitional woodland–shrubland systems across three case study areas in Portugal. The effects of low and moderate grazing intensity by cattle and horses on vegetation structure were assessed on three vegetation strata—canopy, shrubs, and grasses—using indicators to evaluate the influence of grazing on both horizontal and vertical vegetation structure. Moderate grazing shaped vertical vegetation structure by reducing shrub and grass height and by browsing and thinning the lower branches, creating a discontinuity between understorey and canopy layers. These effects on vertical fuel continuity are anticipated to limit the upward spread of flames and reduce the potential for crown fires. In contrast, low-intensity grazing showed limited effects on both vertical and horizontal vegetation structure. This work highlights the potential of using domestic herbivores as a tool to manage vegetation structure and its contribution to mitigating local wildfire hazards. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3025 KiB  
Article
A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery
by Michail Sismanis, Ioannis Z. Gitas, Nikos Georgopoulos, Dimitris Stavrakoudis, Eleni Gkounti and Konstantinos Antoniadis
Forests 2024, 15(11), 2025; https://doi.org/10.3390/f15112025 - 18 Nov 2024
Cited by 1 | Viewed by 1359
Abstract
Tree canopy cover is an important forest inventory parameter and a critical component for the in-depth mapping of forest fuels. This research examines the potential of employing single-date Sentinel-2 multispectral imagery, combined with contextual spatial information, to classify areas based on their tree [...] Read more.
Tree canopy cover is an important forest inventory parameter and a critical component for the in-depth mapping of forest fuels. This research examines the potential of employing single-date Sentinel-2 multispectral imagery, combined with contextual spatial information, to classify areas based on their tree cover density using Random Forest classifiers. Three spatial information extraction methods are investigated for their capacity to acutely detect canopy cover: two based on Gray-Level Co-Occurrence Matrix (GLCM) features and one based on segment statistics. The research was carried out in three different biomes in Greece, in a total study area of 23,644 km2. Three tree cover classes were considered, namely, non-forest (cover < 15%), open forest (cover = 15%–70%), and closed forest (cover ≥ 70%), based on the requirements set for fuel mapping in Europe. Results indicate that the best approach identified delivers F1-scores ranging 70%–75% for all study areas, significantly improving results over the other alternatives. Overall, the synergistic use of spectral and spatial features derived from Sentinel-2 images highlights a promising approach for the generation of tree cover density information layers in Mediterranean regions, enabling the creation of additional information in support of the detailed mapping of forest fuels. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 16916 KiB  
Article
Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images
by Zhengjie Li, Zhiwei Wu, Shihao Zhu, Xiang Hou and Shun Li
Forests 2024, 15(11), 2002; https://doi.org/10.3390/f15112002 - 13 Nov 2024
Viewed by 999
Abstract
The understory fine dead fuel moisture content (DFMC) is an important reference indicator for regional forest fire warnings and risk assessments, and determining it on a large scale is a critical goal. It is difficult to estimate understory fine DFMC directly from satellite [...] Read more.
The understory fine dead fuel moisture content (DFMC) is an important reference indicator for regional forest fire warnings and risk assessments, and determining it on a large scale is a critical goal. It is difficult to estimate understory fine DFMC directly from satellite images due to canopy shading. To address this issue, we used canopy meteorology estimated by Landsat images in combination with explanatory variables to construct random forest models of in-forest meteorology, and then construct random forest models by combining the meteorological factors and explanatory variables with understory fine DFMC obtained from the monitoring device to (1) investigate the feasibility of Landsat images for estimating in-forest meteorology; (2) explore the feasibility of canopy or in-forest meteorology and explanatory variables for estimating understory fine DFMC; and (3) compare the effects of each factor on model accuracy and its effect on understory fine DFMC. The results showed that random forest models improved in-forest meteorology estimation, enhancing in-forest relative humidity, vapor pressure deficit, and temperature by 50%, 34%, and 2.2%, respectively, after adding a topography factor. For estimating understory fine DFMC, models using vapor pressure deficit improved fit by 10.2% over those using relative humidity. Using in-forest meteorology improved fits by 36.2% compared to canopy meteorology. Including topographic factors improved the average fit of understory fine DFMC models by 123.1%. The most accurate model utilized in-forest vapor pressure deficit, temperature, topographic factors, vegetation index, precipitation data, and seasonal factors. Correlations indicated that slope, in-forest vapor pressure deficit, and slope direction were most closely related to understory fine DFMC. The regional understory fine-grained DFMC distribution mapped according to our method can provide important decision support for forest fire risk early warning and fire management. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

21 pages, 5986 KiB  
Article
Assessing the Role of Forest Grazing in Reducing Fire Severity: A Mitigation Strategy
by Raffaella Lovreglio, Julian Lovreglio, Gabriele Giuseppe Antonio Satta, Marco Mura and Antonio Pulina
Fire 2024, 7(11), 409; https://doi.org/10.3390/fire7110409 - 8 Nov 2024
Cited by 3 | Viewed by 2170
Abstract
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to [...] Read more.
This study investigates the role of prescribed grazing as a sustainable fire prevention strategy in Mediterranean ecosystems, with a focus on Sardinia, an area highly susceptible to wildfires. Using FlamMap simulation software, we modeled fire behavior across various grazing and environmental conditions to assess the impact of grazing on fire severity indicators such as flame length, rate of spread, and fireline intensity. Results demonstrate that grazing can reduce fire severity by decreasing combustible biomass, achieving reductions of 25.9% in fire extent in wet years, 60.9% in median years, and 45.8% in dry years. Grazed areas exhibited significantly lower fire intensity, particularly under high canopy cover. These findings support the integration of grazing into fire management policies, highlighting its efficacy as a nature-based solution. However, the study’s scope is limited to small biomass fuels (1-h fuels); future research should extend to larger fuel classes to enhance the generalizability of prescribed grazing as a fire mitigation tool. Full article
(This article belongs to the Special Issue Effects of Fires on Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop