Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = calibrated 2D-MUSIC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4556 KiB  
Article
Acoustic Investigations of Two Barrel-Vaulted Halls: Sisto V in Naples and Aula Magna at the University of Parma
by Antonella Bevilacqua, Adriano Farina, Gino Iannace and Jessica Ferrari
Appl. Sci. 2025, 15(9), 5127; https://doi.org/10.3390/app15095127 - 5 May 2025
Viewed by 665
Abstract
The percentage of historical heritage buildings in Italy is substantial. Many of these buildings are abandoned or not adequately restored for public access due to safety concerns. However, some are managed by city councils and made available to local communities. These heritage buildings, [...] Read more.
The percentage of historical heritage buildings in Italy is substantial. Many of these buildings are abandoned or not adequately restored for public access due to safety concerns. However, some are managed by city councils and made available to local communities. These heritage buildings, valued for their historical significance, are now frequently used for live events, including musical performances by ensembles and small groups. This paper deals with the acoustics of two rooms provided with barrel-vaulted ceilings: Sisto V Hall in Naples and Aula Magna at the University of Parma. These spaces are structurally very similar, differing mainly in length. Acoustic measurements conducted in both halls reveal reverberation times of approximately 4.5 s at mid frequencies, resulting in poor speech clarity. This is primarily due to the presence of reflective surfaces, as the walls and ceilings are plastered, and the floors are tiled. To optimize their acoustic properties for functions such as celebrations, gatherings, and conferences, an acoustic design intervention was proposed. Digital models of the halls were calibrated and used to correct the acoustics by incorporating absorbing panels on the walls and carpeting on the floors of the central walk path. This treatment successfully balanced the reverberation time to approximately 1.3–1.4 s at mid frequencies, making speech more intelligible. Additionally, an amplified audio system was analyzed to enhance sound distribution, ensuring uniform coverage, even in the last rows of seating. Under amplified conditions, sound pressure levels (SPLs) range between 90 dB and 93 dB, with appropriate gain control applied to the column array speakers. Full article
(This article belongs to the Special Issue Architectural Acoustics: From Theory to Application)
Show Figures

Figure 1

16 pages, 5296 KiB  
Article
Acoustic Characterization and Quality Assessment of Cremona’s Ponchielli Theater
by Lamberto Tronchin, Antonella Bevilacqua and Ruoran Yan
Appl. Sci. 2023, 13(6), 4057; https://doi.org/10.3390/app13064057 - 22 Mar 2023
Cited by 19 | Viewed by 2321
Abstract
The Ponchielli theater of Cremona was built in 1808 after a fire destroyed the old wooden structure. The interior, the architecture and the shape of the plan layout are reminiscent of the Teatro alla Scala, Milan, a masterpiece by the architect Piermarini, albeit [...] Read more.
The Ponchielli theater of Cremona was built in 1808 after a fire destroyed the old wooden structure. The interior, the architecture and the shape of the plan layout are reminiscent of the Teatro alla Scala, Milan, a masterpiece by the architect Piermarini, albeit on a smaller scale. The four orders of balconies crowned by the top gallery are typical features of a 19th Century Italian Opera theater. Acoustic measurements have been undertaken across the stalls and in some selected boxes according to ISO 3382. The main acoustic parameters resulting from the measurements have been used for the acoustic calibration of a 3D model representing the Ponchielli theater. The calibration has been used to compare different scenarios involving the acoustic response of the main hall at 50% and 100% occupancy. The outcomes indicate that no significant change can be detected when the seats are provided with robust upholstery, which can be considered a positive result, especially for the actors who are not forced to change their effort between rehearsal and live performance. In order to contextualize the measured values in relation to the optimal ones, a comparison with other Italian Opera theaters provided with similar architectural characteristics has been carried out. Overall, the findings indicate that the acoustics of the Ponchielli theater are suitable for both music and speech in line with the other selected theaters, as these places were mainly created for multifunctional purposes in the 19th Century. Full article
Show Figures

Figure 1

11 pages, 4516 KiB  
Article
Gain-Phase Error-Calibrated Piezoelectric Sensor Array-Based Impact Localization on Stiffened Curved Composite Structures
by Zhiling Wang, Jinyu Zhou, Yongteng Zhong and Chaoyue Li
Sensors 2022, 22(15), 5879; https://doi.org/10.3390/s22155879 - 5 Aug 2022
Cited by 1 | Viewed by 1681
Abstract
Stiffened structure-induced gain-phase errors degrade the performance of the high-resolution two-dimensional multiple signal classification (2D-MUSIC) algorithm, which makes it impossible to ensure the high accuracy of impact localization results. To eliminate the localization bias caused by these errors, a calibrated 2D-MUSIC-based impact localization [...] Read more.
Stiffened structure-induced gain-phase errors degrade the performance of the high-resolution two-dimensional multiple signal classification (2D-MUSIC) algorithm, which makes it impossible to ensure the high accuracy of impact localization results. To eliminate the localization bias caused by these errors, a calibrated 2D-MUSIC-based impact localization method is first introduced. Firstly, time-frequency characteristics of the non-stationary impact signals are evaluated by experiment to obtain a clear first wave packet or a wave packet that purely corresponds to a single mode through continuous wavelet transform (CWT). Then, the uniform linear array covariance matrix with gain-phase errors is calibrated to be constructed as a Toeplitz structural matrix. By reconstructing covariance matrix R, 2D-MUSIC-based impact localization is calibrated for stiffened curved composite structures. Experimental research on the stiffened curved composite panel is carried out, and these impact localization results demonstrate the validity and effectiveness of the calibrated 2D-MUSIC-based method. Full article
(This article belongs to the Special Issue Ultrasonic Sensing Technologies)
Show Figures

Figure 1

12 pages, 3650 KiB  
Article
Adaptive Sensor Array Error Calibration Based Impact Localization on Composite Structure
by Li Ren, Yongteng Zhong, Jiawei Xiang and Zhiling Wang
Appl. Sci. 2020, 10(11), 4042; https://doi.org/10.3390/app10114042 - 11 Jun 2020
Cited by 9 | Viewed by 2766
Abstract
Gains and phases delay induced by sensor position error would significantly degrade the performance of high-resolution two-dimensional multiple signal classification (2D-MUSIC) algorithm, which resulting in low positioning estimation accuracy and poor imaging. In this study, adaptive piezoelectric sensor array calibration based method is [...] Read more.
Gains and phases delay induced by sensor position error would significantly degrade the performance of high-resolution two-dimensional multiple signal classification (2D-MUSIC) algorithm, which resulting in low positioning estimation accuracy and poor imaging. In this study, adaptive piezoelectric sensor array calibration based method is proposed for impact localization on composite structure. First, observed signal vector from the sensor array is represented by error calibration matrix with unknown gains and phases, and then it used to construct the cost function including sensor array parameters. Second, a 2D-MUSIC algorithm based on linear attenuation calibration is applied for estimating the initial estimate of impact location. Finally, substituting the initial estimate, the cost function is minimized by adaptive iterative to calculate the sensor array error parameters and the exact location of the impact source. Both finite element method (FEM) simulation and experimental results on carbon-fiber composite panel demonstrate the validity and effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Structural Health Monitoring & Nondestructive Testing)
Show Figures

Figure 1

28 pages, 6771 KiB  
Article
Direct Wideband Coherent Localization by Distributed Antenna Arrays
by Nenad Vukmirović, Miljko Erić, Miloš Janjić and Petar M. Djurić
Sensors 2019, 19(20), 4582; https://doi.org/10.3390/s19204582 - 21 Oct 2019
Cited by 15 | Viewed by 4637
Abstract
We address wideband direct coherent localization of a radio transmitter by a distributed antenna array in a multipath scenario with spatially-coherent line-of-sight (LoS) signal components. Such a signal scenario is realistic in small cells, especially indoors in the mmWave range. The system model [...] Read more.
We address wideband direct coherent localization of a radio transmitter by a distributed antenna array in a multipath scenario with spatially-coherent line-of-sight (LoS) signal components. Such a signal scenario is realistic in small cells, especially indoors in the mmWave range. The system model considers collocated time and phase synchronized receiving front-ends with antennas distributed in 3D space at known locations connected to the front-ends via calibrated coaxial cables or analog radio frequency over fiber links. The signal model assumes spherical wavefronts. We propose two ML-type algorithms (for known and unknown transmitter waveforms) and a subspace-based SCM-MUSIC algorithm for wideband direct coherent position estimation. We demonstrate the performance of the methods by Monte Carlo simulations. The results show that even in multipath environments, it is possible to achieve localization accuracy that is much better (by two to three orders of magnitude) than the carrier wavelength. They also suggest that the methods that do not exploit knowledge of the waveform have mean-squared errors approaching the Cramér–Rao bound. Full article
(This article belongs to the Special Issue Multi-Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

Back to TopTop