Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = calcium sulfate precipitation risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6100 KiB  
Article
The Conditions for the Formation of Strontium in the Water of Ancient Silicate Deposits Near the Arctic Coast of Russia
by Alexander I. Malov
Water 2024, 16(17), 2369; https://doi.org/10.3390/w16172369 - 23 Aug 2024
Cited by 1 | Viewed by 1219
Abstract
Strontium is a toxic chemical element widely distributed in groundwater. First of all, its appearance in water is associated with the dissolution of sulfate and carbonate rocks. The aim of this study was to assess the characteristics of strontium concentration in ancient aluminosilicate [...] Read more.
Strontium is a toxic chemical element widely distributed in groundwater. First of all, its appearance in water is associated with the dissolution of sulfate and carbonate rocks. The aim of this study was to assess the characteristics of strontium concentration in ancient aluminosilicate deposits that were filled with sedimentogenic brines and seawater in different geological periods. Studies were conducted on 44 water samples, in which the chemical and isotopic composition was determined with the subsequent assessment of saturation indices in relation to the main rock-forming minerals and the residence time of groundwater in the aquifer. It was found that minimal strontium concentrations are characteristic of the least mineralized waters and arise mainly due to the dissolution of carbonates. After their saturation in relation to calcite, the process of carbonate dissolution was replaced by their precipitation and an increase in silicate dissolution with an increase in strontium concentration in more mineralized waters. The incongruent dissolution of aluminosilicates resulted in the appearance of new clay minerals in the aquifer, which together with iron hydroxides and newly formed calcium carbonates created opportunities for sorption and ion exchange processes. The contribution of seawater consisted of an increase in strontium concentrations by approximately 15–20%. The effect of the duration of the water–rock interaction on strontium concentrations in groundwater was expressed in the fact that over a thousand years they increased by 0.1 mg/L, which is 20–30 times less than in the waters of carbonate deposits located 100 km to the east. An assessment of the non-carcinogenic risk to human health of contact with the groundwater showed the safety of using the studied groundwater for drinking purposes. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, Volume II)
Show Figures

Figure 1

22 pages, 9295 KiB  
Article
Geological and Hydrochemical Processes Driving Karst Development in Southeastern Riyadh, Central Saudi Arabia
by Mansour H. Al-Hashim, Alawi Al-Aidaros and Faisal K. Zaidi
Water 2024, 16(14), 1937; https://doi.org/10.3390/w16141937 - 9 Jul 2024
Cited by 4 | Viewed by 2305
Abstract
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the [...] Read more.
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the development of the karst features was investigated using an integrated geological and hydrochemical approach. Geological investigations included the petrographic analysis of rock samples collected from zones of intense karstification with special emphasis on mineral dissolution. The study showed that the Sulaiy Formation is commonly fractured, brecciated, foliated, and contains numerous cavities, vugs, and openings. These features have formed by mineral dissolution by circulating groundwater, which has removed anhydrite beds from the underlying Arab–Hith sequence. Karstification likely started from the tectonically weak zones when there was more groundwater recharge. Studies show that during the early to mid-Holocene period, the climate in the Arabian Peninsula was humid, promoting groundwater recharge and subsequent mineral dissolution, though the process of karstification must have started much earlier. Hydrochemical findings reveal that mineral dissolution (halite and calcium sulfate) is the main process affecting groundwater chemistry. The Piper plot revealed two main hydrochemical facies: the (Ca2+ + Mg2+)–(Cl+ SO42−) Type (Type A) and the (Na+ + K+)–(SO42− + Cl) Type (Type B). Most of the samples belong to Type B, typical of groundwater facies affected by dissolution of halite and anhydrite mineral. The absence of the (Ca2+ + Mg2+)–(CO32− + HCO3) type of groundwater facies indicates a lack of recent groundwater recharge and the removal of carbonate minerals from the system through precipitation, as evidenced by the saturation indices. Plots of the major ionic pairs (cations vs. anions) in groundwater indicate strong halite and gypsum/anhydrite dissolution. Of the three carbonate minerals, calcite has the highest average saturation index followed by aragonite and dolomite. This suggests significant past rock–water interaction leading to carbonate dissolution. Presently, any additional calcium or carbonate ions introduced into the water lead to calcite precipitation. The study indicates that the process of karst development may not be active today. Currently, groundwater chemistry is mainly influenced by rock–water interaction leading to gypsum/anhydrite dissolution, which has resulted in a high concentration of Na+, Ca2+, Cl and SO42− ions in groundwater. The dissolution of gypsum and halite from the Hith Formation weakens the structural integrity of the overlying Sulaiy Formation, creating large underground cavities. These cavities increase the risk of roof collapse, leading to cover-collapse sinkholes as the roof becomes too thin to support the weight above. Full article
Show Figures

Figure 1

17 pages, 2864 KiB  
Article
Scaling Risk Assessment in Nanofiltration of Mine Waters
by Krzysztof Mitko, Ewa Laskowska, Marian Turek, Piotr Dydo and Krzysztof Piotrowski
Membranes 2020, 10(10), 288; https://doi.org/10.3390/membranes10100288 - 15 Oct 2020
Cited by 12 | Viewed by 3090
Abstract
Nanofiltration can be applied for the treatment of mine waters. One of the main problems is the risk of crystallization of sparingly soluble salts on the membrane surface (scaling). In this work, a series of batch-mode nanofiltration experiments of the mine waters was [...] Read more.
Nanofiltration can be applied for the treatment of mine waters. One of the main problems is the risk of crystallization of sparingly soluble salts on the membrane surface (scaling). In this work, a series of batch-mode nanofiltration experiments of the mine waters was performed in a dead-end Sterlitech® HP 4750X Stirred Cell. Based on the laboratory results, the concentration profiles of individual ions along the membrane length in a single-pass industrial-scale nanofiltration (NF) unit was calculated, assuming the tanks-in-series flow model inside the membrane module. These calculations also propose a method for estimating the maximum achievable recovery before the occurrence of the calcium sulfate dihydrate scaling in a single-pass NF 40″ length spiral wound module, simultaneously allowing metastable supersaturation of calcium sulfate dihydrate. The performance of three membrane types (NF270, NFX, NFDL) has been evaluated for the nanofiltration of mine water. Full article
(This article belongs to the Special Issue Membranes for Water and Wastewater Treatment)
Show Figures

Graphical abstract

Back to TopTop