Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cable-type welding wire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5358 KiB  
Article
High-Entropy Alloy Laser Cladding with Cable-Type Welding Wire: Experimental Study and First-Principles Calculations
by Wenjun Wang, Yifei Zheng, Zhihui Cai, Wenjian Zheng, Cai Zhang, Yu Wang, Zhiyong Zhao, Daochen Feng, Yinghe Ma and Jianguo Yang
Metals 2024, 14(11), 1294; https://doi.org/10.3390/met14111294 - 16 Nov 2024
Cited by 1 | Viewed by 1298
Abstract
The Co-Cr-Fe-Ni high-entropy alloy (HEA) is particularly suitable for preparing coatings due to its excellent comprehensive properties. In this study, we use the laser cladding method to prepare Co-Cr-Fe-Ni HEA coatings with Co-Cr-Fe-Ni cable-type welding wire (CTWW) as the filling material and investigated [...] Read more.
The Co-Cr-Fe-Ni high-entropy alloy (HEA) is particularly suitable for preparing coatings due to its excellent comprehensive properties. In this study, we use the laser cladding method to prepare Co-Cr-Fe-Ni HEA coatings with Co-Cr-Fe-Ni cable-type welding wire (CTWW) as the filling material and investigated the dilution rates of the coatings by experimental studies and first-principles calculations. The dilution rate is reduced to about 50% by changing the wire feeding speed, and a Co-Cr-Fe-Ni HEA coating with near nominal composition was prepared by multi-layer cladding. The HEA coating with near nominal composition is successfully prepared in the fourth layer of cladding. The coating is dense and uniform, with good metallurgical bonding. The mechanical properties of the coating were explored using first-principles calculations. All four coatings exhibit a single face-centered cubic (FCC) phase with good mechanical stability in the ground state. The bulk modulus B, shear modulus G, and Young’s modulus E of the four layers of coatings are gradually decreasing from B = 202 GPa, G = 136 GPa, and E = 334 GPa to B = 239 GPa, G = 154 GPa, and E = 380 GPa. The brittleness of the coating shows a trend of first decreasing and then increasing, and the coating closest to the nominal composition has the highest brittleness. Full article
Show Figures

Figure 1

16 pages, 7898 KiB  
Article
Comparative Study on Laser Welding Thick-Walled TC4 Titanium Alloy with Flux-Cored Wire and Cable Wire
by Laibo Sun, Mingqiu Wang, Lujun Huang, Naiwen Fang, Pengbo Wu, Ruisheng Huang, Kai Xu, Xingxing Wang, Jian Qin, Shuai Li and Weimin Long
Materials 2023, 16(4), 1509; https://doi.org/10.3390/ma16041509 - 10 Feb 2023
Cited by 9 | Viewed by 2384
Abstract
In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. [...] Read more.
In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. The macrostructure, microstructure, texture, and grain size of both welded joints were compared by employing an optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM), and the tensile and impact properties were also evaluated. The comparison result showed that the fusion zone microstructure of both welded joints was dominated by a basketweave structure composed of interwoven acicular α′ martensite, whereas the microstructure of flux-cored wire welded joints was finer, and the degree of anisotropy was low. The strength of both welded joints was higher than that of the base metal, ensuring that fracture occurred in the base metal area during tension. The Charpy impact energy of the flux-cored wire welded joint was 16.7% higher than that of the cable wire welded joint, indicating that the welded joint obtained with the flux-cored wire performed better in the welding process of thick-walled titanium alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 2864 KiB  
Article
Study on the Molten Pool Fluid Behavior of PAW-Cable-Type Seven-Wire GMAW Hybrid Welding
by Chao Zhang, Qingxian Hu, Juan Pu and Hao Wu
Crystals 2022, 12(3), 306; https://doi.org/10.3390/cryst12030306 - 22 Feb 2022
Cited by 5 | Viewed by 2220
Abstract
Plasma arc welding (PAW)-cable-type seven-wire GMAW (gas metal arc welding) hybrid welding is known as a high-efficiency welding combining plasma arc, GMAW arc and cable-type welding wire. In this study, numerical simulation via Fluent of the molten pool temperature field and flow field [...] Read more.
Plasma arc welding (PAW)-cable-type seven-wire GMAW (gas metal arc welding) hybrid welding is known as a high-efficiency welding combining plasma arc, GMAW arc and cable-type welding wire. In this study, numerical simulation via Fluent of the molten pool temperature field and flow field and experimental verification were conducted on Q235 thin plate hybrid welding with cable-type wire to explore molten pool fluid behavior. The simulation results show that keyholes form in the molten pool due to the strong penetration ability of a plasma arc and then the evolved pores by the surface tension float out of the molten pool. When the GMAW welding current increases, both the length and width of the weld pool enlarge, the weld reinforcement increases and the flow rate of molten metal in the weld pool also speeds up. While the PAW current increases, the weld pool length also increases and the molten metal in the weld pool significantly flows faster, but the weld reinforcement decreases. When the welding speed increases, the weld pool length and fusion depth decrease, but the reinforcement will first increase and then decrease. The experimental results are in strong agreement with the simulation results. It shows that the numerical analysis model established in this paper is accurate, laying a certain theoretical foundation for the popularization of PAW-cable-type seven-wire GMAW hybrid welding. Full article
Show Figures

Figure 1

12 pages, 4680 KiB  
Article
Microstructure and Mechanical Properties of Wire Arc Additively Manufactured MoNbTaWTi High Entropy Alloys
by Jian Liu, Jing Li, Xian Du, Yonggang Tong, Rui Wang, Dongyu He, Zhihai Cai and Haidou Wang
Materials 2021, 14(16), 4512; https://doi.org/10.3390/ma14164512 - 11 Aug 2021
Cited by 28 | Viewed by 3004
Abstract
High-temperature resistant high-entropy alloys (HEAs) have attracted extensive attention due to their excellent thermodynamic stability and mechanical properties, especially at high temperatures. However, a highly effective method for large-size HEAs is still desirable but challengeable. This research reported a facile yet effective strategy [...] Read more.
High-temperature resistant high-entropy alloys (HEAs) have attracted extensive attention due to their excellent thermodynamic stability and mechanical properties, especially at high temperatures. However, a highly effective method for large-size HEAs is still desirable but challengeable. This research reported a facile yet effective strategy for MoNbTaWTi HEAs via in-situ wire arc additive manufacturing (WAAM). The wire was MoNbTaWTi cable-type welding wire (CTWW) consisting of one center wire and seven twisted peripheral wires. Then, additive manufacturing of MoNbTaWTi high entropy alloys (HEAs) was accomplished, and various analytical techniques studied the microstructures and mechanical properties of the overlaying formed layers. X-ray diffraction showed the overlaying formed layers to contain a single disordered BCC solid solution phase with high-temperature structural stability. In addition, the single-phase BCC structure was maintained from 0 to 1400 °C. The bottom of the overlaying formed layers was made of columnar cellular structure, and the upper part resembled “cauliflower-like” fine dendrite and equiaxed crystal structure. The hardness of the overlaying formed layers averaged 533 HV0.2 at room temperature. At 1000 °C, the hardness was around 110 HV1, close to the value of Inconel 718 alloy (125 HV1). The compressive strength of the overlaying formed alloy layers displayed no sensitivity towards change in temperature from 500 to 1000 °C. As the temperature rose from 500 to 1000 °C, the compressive strength changed from 629 to 602 MPa, equivalent to only a 27 MPa decrease. The latter was much higher than the strength of Inconel 718 alloy at the same temperature (200 MPa). Full article
Show Figures

Figure 1

Back to TopTop