Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bronchial artery visualization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1020 KiB  
Article
Low-keV Virtual Monoenergetic Imaging for Bronchial Artery Visualization on Photon-Counting Detector Computed Tomography
by Xuyang Sun, Tetsu Niwa, Takakiyo Nomura, Ryoichi Yoshida, Kazuo Koyanagi and Jun Hashimoto
Diagnostics 2025, 15(11), 1354; https://doi.org/10.3390/diagnostics15111354 - 28 May 2025
Viewed by 400
Abstract
Background/Objectives: This study aims to determine the optimal use of virtual monoenergetic imaging (VMI) for visualizing the bronchial artery on photon-counting detector computed tomography (PCD-CT). Methods: We evaluated the visibility of the bronchial artery on PCD-CT in 34 consecutive patients with esophageal cancer [...] Read more.
Background/Objectives: This study aims to determine the optimal use of virtual monoenergetic imaging (VMI) for visualizing the bronchial artery on photon-counting detector computed tomography (PCD-CT). Methods: We evaluated the visibility of the bronchial artery on PCD-CT in 34 consecutive patients with esophageal cancer (twenty-eight men, six women; mean age, 70.2 years) prior to surgery. Region-of-interest measurements were taken at the right bronchial artery at the tracheal bifurcation level, mediastinal fat, and the erector spinae muscles on contrast-enhanced early-phase CT. We compared the CT attenuation of the bronchial artery, image noise, and contrast-to-noise ratio (CNR) across VMI at 40, 50, 60, and 70 keV. Additionally, two radiologists performed a subjective image quality assessment by comparing VMI at 40, 50, and 60 keV with 70 keV, rating bronchial artery enhancement, border clarity, peripheral visibility, and image noise. Results: CT attenuation, image noise, and CNR significantly differed across VMI energy levels (p < 0.00001). Lower-keV VMI demonstrated higher CT attenuation and increased noise but also higher CNR (all p < 0.05). Both radiologists rated bronchial artery enhancement, border clarity, and peripheral visibility higher at 40 and 50 keV than at 70 keV, with the highest scores observed at 40 keV (all p < 0.05). Observer 1 noted slightly increased noise at 40 and 50 keV, while observer 2 observed this effect at 40 keV compared with 70 keV. Conclusions: Low-keV (40–50 keV) VMI on PCD-CT enhances bronchial artery visualization. Full article
Show Figures

Figure 1

10 pages, 2159 KiB  
Article
Tau Protein in Lung Smooth Muscle Cells
by Nataliia V. Shults, Sarah Seeherman, Nurefsan E. Sariipek, Vladyslava Rybka, Lucia Marcocci, Sergiy G. Gychka, Yasmine F. Ibrahim and Yuichiro J. Suzuki
J. Respir. 2021, 1(1), 30-39; https://doi.org/10.3390/jor1010003 - 29 Nov 2020
Cited by 4 | Viewed by 4514
Abstract
Tau, a microtubule-associated protein, plays a critical role in the pathophysiology of neurons. However, whether tau protein is expressed in smooth muscle cells is unknown. Thus, we tested the hypothesis that tau protein is expressed in the primary cultures of smooth muscle cells. [...] Read more.
Tau, a microtubule-associated protein, plays a critical role in the pathophysiology of neurons. However, whether tau protein is expressed in smooth muscle cells is unknown. Thus, we tested the hypothesis that tau protein is expressed in the primary cultures of smooth muscle cells. Here, we report that tau protein is expressed and constitutively phosphorylated at threonine 181 in various smooth muscle cell types, including human pulmonary artery smooth muscle cells, bronchial airway smooth muscle cells, and cerebral artery smooth muscle cells. Immunofluorescence staining revealed that phosphorylated tau at threonine 181 is more organized in the cell than is total tau protein. A protein phosphatase inhibitor, calyculin A, induced the formation of higher molecular weight species of phosphorylated tau, as visualized by Western blotting, indicating the occurrence of tau aggregation. Immunofluorescence analysis also showed that calyculin A caused the aggregation of phosphorylated tau and disrupted the cytoskeletal organization. These results demonstrate the existence of tau protein in smooth muscle cells, and that smooth muscle tau is susceptible to protein phosphorylation and aggregation. Lung smooth muscle tau may therefore play an important role in pulmonary pathophysiology. Full article
Show Figures

Figure 1

Back to TopTop