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Abstract: Tau, a microtubule-associated protein, plays a critical role in the pathophysiology of neurons.
However, whether tau protein is expressed in smooth muscle cells is unknown. Thus, we tested the
hypothesis that tau protein is expressed in the primary cultures of smooth muscle cells. Here, we report
that tau protein is expressed and constitutively phosphorylated at threonine 181 in various smooth
muscle cell types, including human pulmonary artery smooth muscle cells, bronchial airway smooth
muscle cells, and cerebral artery smooth muscle cells. Immunofluorescence staining revealed
that phosphorylated tau at threonine 181 is more organized in the cell than is total tau protein.
A protein phosphatase inhibitor, calyculin A, induced the formation of higher molecular weight
species of phosphorylated tau, as visualized by Western blotting, indicating the occurrence of tau
aggregation. Immunofluorescence analysis also showed that calyculin A caused the aggregation
of phosphorylated tau and disrupted the cytoskeletal organization. These results demonstrate the
existence of tau protein in smooth muscle cells, and that smooth muscle tau is susceptible to protein
phosphorylation and aggregation. Lung smooth muscle tau may therefore play an important role in
pulmonary pathophysiology.
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1. Introduction

Tau is a microtubule-associated and natively unfolded protein, implicated in the pathogenesis
of Alzheimer’s disease and well-studied in the brain [1]. Tau promotes the self-assembly
of tubulin into microtubules and plays a role in microtubule stabilization in the cell [2,3].
Under physiological conditions, tau is a stabilizer of microtubules and regulates cell differentiation
and proliferation [4–6]. However, under pathological conditions, tau proteins assemble into insoluble
aggregates [7–10]. Tau protein aggregation in the brain is a hallmark of Alzheimer’s disease,
the most common neurodegenerative dementia [11–15]. In addition, the abnormal deposition of
misprocessed and aggregated tau proteins in the nervous system contributes to the development of
supranuclear palsy, corticobasal degeneration, Pick’s disease, Huntington’s disease, argyrophilic grain
disease, frontotemporal dementia and parkinsonism linked to chromosome 17, and globular glial
tauopathy [16–22]. The phosphorylation of tau contributes to disease-associated tau toxicity [13,23–26].
Tau is also expressed in non-neural cells, including fibroblasts and lymphocytes [27,28].
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Tau is a microtubule-associated protein that promotes the polymerization and assembly of
microtubules, and is considered to be one of the most important proteins in the pathology of the central
nervous system [6]. It is located in the cellular compartment as well as in the interstitial fluid [29].
The abnormal accumulation of misprocessed tau is associated with various neurodegenerative
diseases [30]. It has recently been shown that tau has multiple functions in addition to axonal
microtubule assembly. It binds to nucleic acid and modulates gene expression and RNA stability [31].
Under pathological conditions, tau causes DNA and RNA damage, nuclear disorganization, RNA and
ribosome instability, and changes in protein expression [32–34]. Tau may also modulate and impair cell
signaling, contributing to altered receptor activities and cell death [13,35,36].

Since it is not known if tau protein is expressed in the lung or in smooth muscle cells, the present
study examined the expression of tau protein in smooth muscle cells, particularly in the lungs. We found
that various types of smooth muscle cells, including those in the pulmonary vessels and airways,
express tau protein, which is subjected to protein phosphorylation and aggregation. These results are
the first to indicate the possible pathophysiological importance of tau in the lungs.

2. Experimental Section

2.1. Histology

Postmortem brain tissues were collected from patients with a history of systemic hypertension
and who died of ischemic stroke. The tissues were taken from the perifocal zone of the ischemic infarct
in the region of the middle cerebral artery of the frontal lobe. The clinical studies were approved by the
regional committee for medical research ethics in Kiev, Ukraine (ethical code: 81, 2016) and performed
under the Helsinki Declaration of 1975, revised in 2013, or comparable ethical standards.

Brain tissues were immersed in buffered 10% formalin at room temperature and embedded in
paraffin. The paraffin-embedded tissues were cut and mounted on glass slides. The tissue sections were
subjected to immunohistochemistry using the tau antibody (MilliporeSigma, Burlington, MA, USA).

2.2. Cell Culture

Human brain vascular smooth muscle cells (Catalog # 1100), human pulmonary artery smooth
muscle cells (Catalog # 3110), and human bronchial smooth muscle cells (Catalog # 3400) were
purchased from ScienCell Research Laboratories (Carlsbad, CA, USA). The cells were cultured in
accordance with the manufacturer’s instructions in 5% CO2 at 37 ◦C. They were then treated with
calyculin A or H2O2 purchased from MilliporeSigma. For the siRNA experiments, the cells were
transfected with an siRNA Transfection Reagent and control, tau (h) or tau (h2) siRNA from Santa
Cruz Biotechnology (Dallas, TX, USA). Finally, 48 h later, the cell lysates were prepared.

2.3. Western Blotting

To prepare the cell lysates, the cells were washed in phosphate-buffered saline and solubilized
with lysis buffer containing 50 mM Hepes (pH 7.4), 1% (v/v) Triton X-100, 4 mM EDTA, 1 mM sodium
fluoride, 0.1 mM sodium orthovanadate, 1 mM tetrasodium pyrophosphate, 2 mM PMSF, 10 µg/mL
leupeptin, and 10 µg/mL aprotinin. The samples were then centrifuged at 16,000 g for 10 min at 4 ◦C.
Finally, the supernatants were collected, and protein concentrations determined.
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Equal amounts of protein samples were electrophoresed through a reducing sodium dodecyl
sulfate polyacrylamide gel. The proteins in the gel were then electro-transferred to the Immobilon-FL
Transfer Membrane (MilliporeSigma, Burlington, MA, USA). The membrane was blocked with Odyssey
blocking buffer (LI-COR, Lincoln, NE, USA) for 1 h at 25 ◦C and incubated overnight with the rabbit
anti-tau (C-terminal) antibody (MilliporeSigma) or mouse anti-phospho-tau (Thr181) Clone AT270
antibody (Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C. The washed membranes were then
incubated with IRDye 680RD or IRDye 800CW (LI-COR) for 1 h. The signals were obtained using the
Odyssey Infrared Imaging System (LI-COR). IRDye 680RD or IRDye 800CW secondary antibodies
alone did not produce any signals in the absence of primary antibodies.

2.4. Immunofluorescence Analysis

The immunofluorescence analysis of tau protein and phosphorylated tau at threonine 181 was
performed on 70% confluent human pulmonary artery smooth muscle cells. The cells were fixed with
4% paraformaldehyde for 15 min, permeabilized with 0.25% Triton X-100 for 10 min, and blocked
with 5% BSA for 1 h at room temperature. The cells were labeled with the rabbit anti-tau (C-terminal)
antibody (MilliporeSigma) or mouse anti-phospho-tau (Thr181) Clone AT270 antibody (Thermo Fisher
Scientific) at room temperature at a dilution of 1:1000 in 1% BSA for 1 h and then labeled with the Alexa
Fluor488 secondary antibodies at a dilution of 1:500 for 30 min at room temperature. Alexa Fluor488
alone did not give non-specific green staining in human pulmonary artery smooth muscle cells.
F-actin was stained with Alexa Fluor 594 phalloidin, and the nuclear staining was performed using
4′,6-diamidino-2-phenylindole (DAPI). The slides were examined using an Olympus BX61 DSU
Fluorescence microscope. Digital fluorescence micrographs were recorded and analyzed with the
ImageProPlus software.

2.5. Statistical Analysis

Means ± standard error of the mean (SEM) were calculated and then comparisons between two
groups were performed using a Student’s t test, while comparisons between three or more groups
were performed using ANOVA. p < 0.05 was considered statistically significant.

3. Results

3.1. Tau Protein is Expressed and Constitutively Phosphorylated at Threonine 181 in Smooth Muscle Cells

Tau protein expressed in neuronal cells is known to play a key role in neurological
disorders. However, whether smooth muscle cells express tau protein is unknown. Thus, we first
examined tau protein expression in the brains of human patients who died of ischemic stroke by
immunohistochemistry. As shown in Figure 1a, tau protein expression was detected in the neuronal
tissues, as expected. The smooth muscle layer of cerebral vessels was also positive for tau protein
expression (Figure 1a, arrows). Similar results showing the expression of tau protein in brain vascular
smooth muscle cells were obtained from three patients.

Similarly, tau protein expression was also detected by Western blotting in the cell lysates prepared
from cultured human brain vascular smooth muscle cells (Figure 1b). Two sequences of siRNA reduced
the intensity of the band, confirming that this ~40 kDa band is indeed tau protein expressed in smooth
muscle cells (Figure 1b). We also found that tau protein expressed in human brain vascular smooth
muscle cells is constitutively phosphorylated, as detected by Western blotting using an antibody that
recognizes phosphorylated tau at threonine 181 (Figure 2). Interestingly, tau protein expression was
also detected in the human pulmonary artery smooth muscle cells of the lung vasculature, as well as in
the human bronchial smooth muscle cells of the airways (Figure 2). This is the first demonstration of
the expression of tau protein in smooth muscle cells, as well as in lung components.
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Figure 1. Tau protein is expressed in smooth muscle cells. (a) Immunohistochemistry shows that tau 
protein is expressed in the brain vascular smooth muscle tissues of patients with systemic 
hypertension who died of ischemic stroke. Magnification × 40. Scale bar, 50 µm. (b) Cultured human 
brain vascular smooth muscle cells transfected with control, tau (h) or tau (h2) siRNA. 48 h later, cell 
lysates were prepared. Western blooming with tau protein and GAPDH protein antibodies. 
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Figure 1. Tau protein is expressed in smooth muscle cells. (a) Immunohistochemistry shows that tau
protein is expressed in the brain vascular smooth muscle tissues of patients with systemic hypertension
who died of ischemic stroke. Magnification × 40. Scale bar, 50 µm. (b) Cultured human brain vascular
smooth muscle cells transfected with control, tau (h) or tau (h2) siRNA. 48 h later, cell lysates were
prepared. Western blooming with tau protein and GAPDH protein antibodies.
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Figure 2. Threonine 181 of tau protein is constitutively phosphorylated in smooth muscle cells. Cell 
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(HBSMC) were subjected to Western blotting using the antibody (Ab) against phosphorylated tau 
(p-tau) at threonine 181 (Thr181). The secondary Ab-only control without the p-tau antibody is also 
shown. 
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Immunofluorescence staining using the tau antibody showed dispersed total tau protein 
expression in the cytoplasm of human pulmonary artery smooth muscle cells (Figure 3a). By 
contrast, tau protein phosphorylated at threonine 181 was found to be associated with the 
microtubule, and is well organized in the cytoplasm, as determined by immunofluorescence staining 
using the phospho-specific tau antibody (Figure 3b). 

 
Figure 3. Tau protein phosphorylated at threonine 181 is highly organized in smooth muscle cells. 
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Figure 2. Threonine 181 of tau protein is constitutively phosphorylated in smooth muscle cells.
Cell lysates prepared from cultured human brain vascular smooth muscle cells (HBVSMC), human
pulmonary artery smooth muscle cells (HPASMC), and human bronchial smooth muscle cells (HBSMC)
were subjected to Western blotting using the antibody (Ab) against phosphorylated tau (p-tau) at
threonine 181 (Thr181). The secondary Ab-only control without the p-tau antibody is also shown.
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3.2. Cytoskeletal Organization of Tau and Phosphorylated Tau in Lung Vascular Smooth Muscle Cells

Immunofluorescence staining using the tau antibody showed dispersed total tau protein expression
in the cytoplasm of human pulmonary artery smooth muscle cells (Figure 3a). By contrast, tau protein
phosphorylated at threonine 181 was found to be associated with the microtubule, and is well organized
in the cytoplasm, as determined by immunofluorescence staining using the phospho-specific tau
antibody (Figure 3b).
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Figure 3. Tau protein phosphorylated at threonine 181 is highly organized in smooth muscle cells.
Untreated human pulmonary artery smooth muscle cells were subjected to immunofluorescence (IF)
analysis using (a) the tau protein antibody and (b) the phospho-specific tau (Thr181) antibody (p-tau).
The areas indicated with squares are shown enlarged on the right side of each image. Three representative
images are shown for each case. The green color indicates tau or p-tau antibody staining, the red
color shows F-actin, and the nuclear staining was performed using DAPI. These images show the well
assembled network of phosphorylated tau localized along the microtubules, while tau protein molecules
that are not phosphorylated at threonine 181 are not well organized. Scale bars, 50 µm.

3.3. Effects of Calyculin A in Lung Vascular and Airway Smooth Muscle Cells

Calyculin A is an inhibitor of protein phosphatases types 1 and 2A that should promote cellular
protein phosphorylation [37,38]. Our Western blotting experiments revealed that calyculin A produced
multiple higher molecular weight species that can be detected by the phospho-tau (Thr181) antibody
in human pulmonary artery smooth muscle cells (Figure 4a). These higher molecular weight species
largely occurred at about 80 and 160 kDa; they can be induced after just 10 min of cell treatment with
calyculin A, and their formation continues to increase for 30 min (Figure 4a). By contrast, subjecting
cells to oxidative stress by hydrogen peroxide treatment did not induce such higher molecular weight
species (Figure 4a). The molecular weights of 80 and 160 kDa are consistent with the multimers of
tau protein. These may be the products of phosphorylation-dependent tau aggregation. With light
microscopy, it was visible that cells get rounded up in response to calyculin A, while no visible changes
were observed in H2O2-treated cells.
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Figure 4. Calyculin A forms high molecular phosphorylated tau species. (a) Human pulmonary
artery smooth muscle cells were treated with calyculin A (50 ng/mL) or hydrogen peroxide (H2O2) for
the durations indicated. (b) Human bronchial smooth muscle cells were treated with various doses
of calyculin A for the durations indicated. Cell lysates were subjected to Western blotting with the
antibody against phosphorylated tau at threonine 181 (p-tau). Bar graphs represent means ± SEM of
the ratio of 80 kDa p-tau band to 40 kDa p-tau band (N = 3–4). * Significantly different from untreated
at p < 0.05.

Similarly, these high molecular weight species were also detected in airway smooth muscle cells
treated with calyculin A. Figure 4b shows that the treatment of human bronchial smooth muscle cells
with calyculin A at 50 ng/mL caused the formation of the higher molecular weight species of tau at 80,
120, 160, and perhaps 200 or 240 kDa in a time-dependent manner. The formation of higher molecular
weight species occurred after just 10 min, and continued to increase (Figure 4b). The dose-dependence
of calyculin A at 5, 20 and 50 ng/mL was also observed (Figure 4b). We repeatedly and consistently
observed the formation of calyculin A-induced higher molecular weight species, as visualized using
the phospho-tau (Thr181) antibody in smooth muscle cells in at least 10 separate experiments.

Immunofluorescence staining demonstrated that the treatment of human pulmonary artery
smooth muscle cells with calyculin A disrupted the well-organized cytoskeletal structure of tau
phosphorylated at threonine 181 and formed some protein aggregates, as indicated by the arrows in
Figure 5a. The quantification of the number of phosphorylated tau aggregates per cell showed that
calyculin A significantly increased the aggregation (Figure 5b).
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Figure 5. Calyculin A disturbs phosphorylated tau organization. Human pulmonary artery smooth
muscle cells were treated with calyculin A (50 ng/mL) for 30 min and subjected to immunofluorescence
(IF) analysis using the antibody against phosphorylated tau protein at threonine 181, p-tau (Thr181).
(a) Three representative images are shown for untreated cells and calyculin A-treated cells. Cells treated
with calyculin A show the absence of well-assembled microtubules as well as dispersed phosphorylated
tau proteins. The aggregation of phosphorylated tau is also visible, as indicated by the arrows. Scale bars,
50 µm. (b) Bar graph represents means ± SEM of aggregated p-tau per cell (N = 6). * Significantly
different from untreated at p < 0.05.

4. Discussion

Our findings in the present study showing that tau protein is expressed in various smooth muscle
cell types opens up the possibility that this protein may play a pathophysiological role in vascular and
airway systems by regulating the various biological mechanisms that it can elicit. As in the nervous
system, smooth muscle tau protein can be phosphorylated. This study specifically examined tau
phosphorylation at threonine 181 in smooth muscle cells; however, future investigations are warranted
to understand the roles of the various phosphorylation sites within the tau protein molecule.

It is noteworthy that phosphorylated tau at threonine 181 specifically assembles in a well-organized
fashion in lung smooth muscle cells, while most tau protein molecules seem to be less well organized.
These results highlight the potential importance of the threonine 181 phosphorylation of tau in smooth
muscle cell biology. Further, as calyculin A-inhibitable protein phosphatase type 1 is known to
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participate in the structure and functioning of smooth muscle myosin light chain phosphatase [39],
our findings indicate that tau phosphorylation may be involved in the muscle contraction.

Our finding that calyculin A promotes the aggregation of tau in lung vascular and airway smooth
muscle cells is also noteworthy, in that the tau aggregation seen in neurodegenerative diseases could
also occur in lung smooth muscle cells. Further, our results consistently showing the formation of
higher molecular weight species corresponding to the multimers of tau protein by the calyculin A
treatment of cells suggest the possible use of this protein phosphatase inhibitor for researching tau
aggregation in brain cells to combat Alzheimer’s disease. Boban et al. [40] reported that okadaic acid,
another inhibitor of protein phosphatase types 1 and 2A, promoted the formation of high molecular
weight tau species in SH-SY5Y neuroblastoma cells. However, this tau species had a molecular weight
of around 100 kDa, which is not consistent with the products of tau aggregation.

In summary, the present study showed, for the first time, that smooth muscle cells express tau
protein, and that smooth muscle tau is capable of being phosphorylated and aggregated. Future studies
to further understand the properties of smooth muscle tau protein should shed light on normal cell
biology, as well as on therapeutic strategies to combat a wide variety of diseases that affect smooth
muscle cells. The findings of the present study in lung vascular and airway smooth muscle cells also
specifically highlight the possible importance of tau in lung pathophysiology.
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