Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = brain-controlled driving mode selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
85 pages, 24685 KB  
Review
Adaptogens in Long-Lasting Brain Fatigue: An Insight from Systems Biology and Network Pharmacology
by Alexander Panossian, Terrence Lemerond and Thomas Efferth
Pharmaceuticals 2025, 18(2), 261; https://doi.org/10.3390/ph18020261 - 15 Feb 2025
Cited by 3 | Viewed by 10253
Abstract
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine [...] Read more.
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine cycle imbalance, glucose metabolism, and ATP energy supply, which are associated with multiple molecular targets and signaling pathways in neuroendocrine-immune and blood circulation systems. Regeneration of damaged brain tissue is a long-lasting multistage process, including spontaneously regulating hypothalamus-pituitary (HPA) axis-controlled anabolic–catabolic homeostasis to recover harmonized sympathoadrenal system (SAS)-mediated function, brain energy supply, and deregulated gene expression in rehabilitation. The driving mechanism of spontaneous recovery and regeneration of brain tissue is a cross-talk of mediators of neuronal, microglia, immunocompetent, and endothelial cells collectively involved in neurogenesis and angiogenesis, which plant adaptogens can target. Adaptogens are small molecules of plant origin that increase the adaptability of cells and organisms to stress by interaction with the HPA axis and SAS of the stress system (neuroendocrine-immune and cardiovascular complex), targeting multiple mediators of adaptive GPCR signaling pathways. Two major groups of adaptogens comprise (i) phenolic phenethyl and phenylpropanoid derivatives and (ii) tetracyclic and pentacyclic glycosides, whose chemical structure can be distinguished as related correspondingly to (i) monoamine neurotransmitters of SAS (epinephrine, norepinephrine, and dopamine) and (ii) steroid hormones (cortisol, testosterone, and estradiol). In this narrative review, we discuss (i) the multitarget mechanism of integrated pharmacological activity of botanical adaptogens in stress overload, ischemic stroke, and long-lasting brain fatigue; (ii) the time-dependent dual response of physiological regulatory systems to adaptogens to support homeostasis in chronic stress and overload; and (iii) the dual dose-dependent reversal (hormetic) effect of botanical adaptogens. This narrative review shows that the adaptogenic concept cannot be reduced and rectified to the various effects of adaptogens on selected molecular targets or specific modes of action without estimating their interactions within the networks of mediators of the neuroendocrine-immune complex that, in turn, regulates other pharmacological systems (cardiovascular, gastrointestinal, reproductive systems) due to numerous intra- and extracellular communications and feedback regulations. These interactions result in polyvalent action and the pleiotropic pharmacological activity of adaptogens, which is essential for characterizing adaptogens as distinct types of botanicals. They trigger the defense adaptive stress response that leads to the extension of the limits of resilience to overload, inducing brain fatigue and mental disorders. For the first time, this review justifies the neurogenesis potential of adaptogens, particularly the botanical hybrid preparation (BHP) of Arctic Root and Ashwagandha, providing a rationale for potential use in individuals experiencing long-lasting brain fatigue. The review provided insight into future research on the network pharmacology of adaptogens in preventing and rehabilitating long-lasting brain fatigue following stroke, trauma, and viral infections. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 1363 KB  
Article
Functional Coherence in Intrinsic Frontal Executive Networks Predicts Cognitive Impairments in Alcohol Use Disorder
by Nicola Canessa, Gianpaolo Basso, Marina Manera, Paolo Poggi and Claudia Gianelli
Brain Sci. 2023, 13(1), 45; https://doi.org/10.3390/brainsci13010045 - 26 Dec 2022
Cited by 5 | Viewed by 1969
Abstract
Growing evidence highlights the potential of innovative rehabilitative interventions such as cognitive remediation and neuromodulation, aimed at reducing relapses in Alcohol Use Disorder (AUD). Enhancing their effectiveness requires a thorough description of the neural correlates of cognitive alterations in AUD. Past related attempts, [...] Read more.
Growing evidence highlights the potential of innovative rehabilitative interventions such as cognitive remediation and neuromodulation, aimed at reducing relapses in Alcohol Use Disorder (AUD). Enhancing their effectiveness requires a thorough description of the neural correlates of cognitive alterations in AUD. Past related attempts, however, were limited by the focus on selected neuro-cognitive variables. We aimed to fill this gap by combining, in 22 AUD patients and 18 controls, an extensive neuro-cognitive evaluation and metrics of intrinsic connectivity as highlighted by resting-state brain activity. We addressed an inherent property of intrinsic activity such as intra-network coherence, the temporal correlation of the slow synchronous fluctuations within resting-state networks, representing an early biomarker of alterations in the functional brain architecture underlying cognitive functioning. AUD patients displayed executive impairments involving working-memory, attention and visuomotor speed, reflecting abnormal coherence of activity and grey matter atrophy within default mode, in addition to the attentional and the executive networks. The stronger relationship between fronto-lateral coherent activity and executive performance in patients than controls highlighted possible compensatory mechanisms counterbalancing the decreased functionality of networks driving the switch from automatic to controlled behavior. These results provide novel insights into AUD patients’ cognitive impairments, their neural bases, and possible targets of rehabilitative interventions. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

16 pages, 3631 KB  
Article
Driving Mode Selection through SSVEP-Based BCI and Energy Consumption Analysis
by Juai Wu, Zhenyu Wang, Tianheng Xu and Chengyang Sun
Sensors 2022, 22(15), 5631; https://doi.org/10.3390/s22155631 - 28 Jul 2022
Cited by 3 | Viewed by 2311
Abstract
Background: The brain–computer interface (BCI) is a highly cross-discipline technology and its successful application in various domains has received increasing attention. However, the BCI-enabled automobile industry is has been comparatively less investigated. In particular, there are currently no studies focusing on brain-controlled driving [...] Read more.
Background: The brain–computer interface (BCI) is a highly cross-discipline technology and its successful application in various domains has received increasing attention. However, the BCI-enabled automobile industry is has been comparatively less investigated. In particular, there are currently no studies focusing on brain-controlled driving mode selection. Specifically, different driving modes indicate different driving styles which can be selected according to the road condition or the preference of individual drivers. Methods: In this paper, a steady-state visual-evoked potential (SSVEP)-based driving mode selection system is proposed. Upon this system, drivers can select the intended driving modes by only gazing at the corresponding SSVEP stimuli. A novel EEG processing algorithm named inter-trial distance minimization analysis (ITDMA) is proposed to enhance SSVEP detection. Both offline and real-time experiments were carried out to validate the effectiveness of the proposed system. Conclusion: The results show that a high selection accuracy of up to 92.3% can be realized, although this depends on the specific choice of flickering duration, the number of EEG channels, and the number of training signals. Additionally, energy consumption is investigated in terms of which the proposed brain-controlled system considerably differs from a traditional driving mode selection system, and the main reason is shown to be the existence of a detection error. Full article
(This article belongs to the Special Issue Human–Machine Interfaces: Design, Sensing and Stimulation)
Show Figures

Figure 1

35 pages, 4236 KB  
Review
Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme
by Manali Tilak, Jennifer Holborn, Laura A. New, Jasmin Lalonde and Nina Jones
Int. J. Mol. Sci. 2021, 22(4), 1831; https://doi.org/10.3390/ijms22041831 - 12 Feb 2021
Cited by 65 | Viewed by 9434
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited [...] Read more.
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research. Full article
Show Figures

Figure 1

18 pages, 1023 KB  
Review
Potential Utility of Biased GPCR Signaling for Treatment of Psychiatric Disorders
by Hidetoshi Komatsu, Mamoru Fukuchi and Yugo Habata
Int. J. Mol. Sci. 2019, 20(13), 3207; https://doi.org/10.3390/ijms20133207 - 29 Jun 2019
Cited by 25 | Viewed by 13456
Abstract
Tremendous advances have been made recently in the identification of genes and signaling pathways associated with the risks for psychiatric disorders such as schizophrenia and bipolar disorder. However, there has been a marked reduction in the pipeline for the development of new psychiatric [...] Read more.
Tremendous advances have been made recently in the identification of genes and signaling pathways associated with the risks for psychiatric disorders such as schizophrenia and bipolar disorder. However, there has been a marked reduction in the pipeline for the development of new psychiatric drugs worldwide, mainly due to the complex causes that underlie these disorders. G-protein coupled receptors (GPCRs) are the most common targets of antipsychotics such as quetiapine and aripiprazole, and play pivotal roles in controlling brain function by regulating multiple downstream signaling pathways. Progress in our understanding of GPCR signaling has opened new possibilities for selective drug development. A key finding has been provided by the concept of biased ligands, which modulate some, but not all, of a given receptor’s downstream signaling pathways. Application of this concept raises the possibility that the biased ligands can provide therapeutically desirable outcomes with fewer side effects. Instead, this application will require a detailed understanding of the mode of action of antipsychotics that drive distinct pharmacologies. We review our current understanding of the mechanistic bases for multiple signaling modes by antipsychotics and the potential of the biased modulators to treat mental disorders. Full article
(This article belongs to the Special Issue GPCR Structure and Function in Disease)
Show Figures

Figure 1

Back to TopTop