Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bovine kobuvirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2055 KiB  
Communication
Relevancy Prediction of the Emerging Pathogens with Porcine Diarrhea by Logistic Regression Model
by Benqiang Li, Jie Tao, Xin Li, Jinghua Cheng, Ying Shi, Pan Tang and Huili Liu
Microorganisms 2025, 13(3), 528; https://doi.org/10.3390/microorganisms13030528 - 27 Feb 2025
Viewed by 532
Abstract
Porcine viral diarrhea has always been one of the main obstacles to the healthy development of the pig industry in China with its variety of pathogens and complexity of co-infections. Analysis of the dominant mixed-infection model is a fundamental step in boosting the [...] Read more.
Porcine viral diarrhea has always been one of the main obstacles to the healthy development of the pig industry in China with its variety of pathogens and complexity of co-infections. Analysis of the dominant mixed-infection model is a fundamental step in boosting the prevention and control of porcine diarrhea. In this study, 3256 porcine fecal samples were collected from 17 pig herds in Shanghai, China, from 2015 to 2023 to identify novel pathogenic infection patterns. The results confirmed that porcine astrovirus (PAstV), porcine sapelovirus (PSV), and porcine epidemic diarrhea virus (PEDV) were the top three agents with positive rates of 28.47%, 20.71%, and 20.23%, respectively. Porcine rotavirus (PoRV) and transmissible gastroenteritis virus (TGEV) accounted for only 8.12% and 1.12%, respectively. Importantly, mixed infection rates were high and complicated. The double infection rate was higher than that of a single infection. Next, the mixed-infection model of PEDV and emerging diarrheal pathogens was explored. The predominant dual-infection models were PEDV/PKoV (porcine kobuvirus) (14.18%), PEDV/PAstV (10.02%), and PEDV/PSV (9.29%). The predominant triple infection models were PEDV/PKoV/PAstV (18.93%), PEDV/PSV/PAstV (10.65%), and PEDV/PKoV/PSV (7.10%). The dominant quadruple-infection model was PEDV/PAstV/PSV/PKoV (46.82%). In conclusion, PEDV is mainly mix-infected with PAstV, PSV, and PKoV in clinical settings. Furthermore, multiple-factor logistic regression analysis confirmed that PAstV, PKoV, bovine viral diarrhea virus (BVDV), and PEDV were closely related to porcine diarrhea. PEDV/PKoV, PEDV/porcine sapovirus (PoSaV), PKoV/BVDV, PoSaV/BVDV, and porcine deltacoronavirus (PDCoV)/PoSaV had great co-infection dominance, which will be helpful for porcine co-infection research. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

12 pages, 1898 KiB  
Article
Identification of Recombinant Aichivirus D in Cattle, Italy
by Francesco Pellegrini, Gianvito Lanave, Francesca Caringella, Georgia Diakoudi, Anna Salvaggiulo, Alessandra Cavalli, Alessandro Papaleo, Barbara Di Martino, Michele Camero, Krisztián Bányai, Jelle Matthijnssens and Vito Martella
Animals 2024, 14(22), 3315; https://doi.org/10.3390/ani14223315 - 18 Nov 2024
Cited by 2 | Viewed by 974
Abstract
Kobuviruses (KoVs) are a group of small, non-enveloped RNA viruses classified in the genus Kobuvirus within the Picornaviridae family, comprising Aichivirus species A to F. KoVs have been identified in humans and several mammals, including domestic ungulates. This study investigated the presence of [...] Read more.
Kobuviruses (KoVs) are a group of small, non-enveloped RNA viruses classified in the genus Kobuvirus within the Picornaviridae family, comprising Aichivirus species A to F. KoVs have been identified in humans and several mammals, including domestic ungulates. This study investigated the presence of KoVs in a collection of bovine stool samples (n = 38) obtained from animals with enteritis or without clinical signs. By RT-PCR screening, KoV RNA was detected in 10/38 animals (26.3%). Six of the ten positive animals had enteric signs. On sequence analysis of the amplicons, eight strains were related to species Aichivirus B, commonly identified in cattle. In contrast, two strains (ITA/2019/572-1 and ITA/2020/bovine/30-2), displayed the highest nt identity (up to 97.1%) to cattle, yak, and goat Aichivirus D strains. On whole genome analysis, strains ITA/2019/572-1 and ITA/2020/30-2 showed 88.9% nt identity to each other and 87.8–90.3% nt to the bovine kobuvirus strain CHN/2021/ON730709 identified in China. Interestingly these three Aichivirus D strains showed a recombinant makeup, clustering with D1 genotype in the capsid region and with D2 genotype in the non-structural genes. These findings suggest that Aichivirus D KoVs are common components of livestock virome. Understanding the genetic diversity of KoVs in animals will be useful to improve the diagnostics and gather epidemiological data. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

25 pages, 1325 KiB  
Article
A One-Year Retrospective Analysis of Viral and Parasitological Agents in Wildlife Animals Admitted to a First Aid Hospital
by Maria Irene Pacini, Maurizio Mazzei, Micaela Sgorbini, Rossella D’Alfonso and Roberto Amerigo Papini
Animals 2023, 13(5), 931; https://doi.org/10.3390/ani13050931 - 4 Mar 2023
Cited by 3 | Viewed by 2794
Abstract
This study aimed to provide information on the presence and frequency of viral and parasitic agents in wildlife presented to a Veterinary Teaching Hospital in 2020–2021. Serum and faecal samples were collected from 50 rescued animals (roe deer, fallow deer, foxes, badgers, pine [...] Read more.
This study aimed to provide information on the presence and frequency of viral and parasitic agents in wildlife presented to a Veterinary Teaching Hospital in 2020–2021. Serum and faecal samples were collected from 50 rescued animals (roe deer, fallow deer, foxes, badgers, pine martens, and porcupines) and examined by serological, molecular, and parasitological techniques. Transtracheal wash (TTW) was also collected post-mortem from roe deer. Overall, the results of the different techniques showed infections with the following viral and parasitic agents: Bovine Viral Diarrhea Virus, Small Ruminant Lentiviruses, Kobuvirus, Astrovirus, Canine Adenovirus 1, Bopivirus, gastrointestinal strongyles, Capillaria, Ancylostomatidae, Toxocara canis, Trichuris vulpis, Hymenolepis, Strongyloides, Eimeria, Isospora, Dictyocaulus, Angiostrongylus vasorum, Crenosoma, Dirofilaria immitis, Neospora caninum, Giardia duodenalis, and Cryptosporidium. Sequencing (Tpi locus) identified G. duodenalis sub-assemblages AI and BIV in one roe deer and one porcupine, respectively. Adult lungworms collected from the TTW were identified as Dictyocaulus capreolus (COX1 gene). This is the first molecular identification of G. duodenalis sub-assemblage AI and D. capreolus in roe deer in Italy. These results show a wide presence of pathogens in wild populations and provide an overview of environmental health surveillance. Full article
Show Figures

Figure 1

9 pages, 1789 KiB  
Communication
Virome Profiling of an Eastern Roe Deer Reveals Spillover of Viruses from Domestic Animals to Wildlife
by Yue Sun, Lanshun Sun, Sheng Sun, Zhongzhong Tu, Yang Liu, Le Yi, Changchun Tu and Biao He
Pathogens 2023, 12(2), 156; https://doi.org/10.3390/pathogens12020156 - 18 Jan 2023
Cited by 3 | Viewed by 2253
Abstract
Eastern roe deer (Capreolus pygargus) is a small ruminant and is widespread across China. This creature plays an important role in our ecological system. Although a few studies have been conducted to investigate pathogens harbored by this species, our knowledge of [...] Read more.
Eastern roe deer (Capreolus pygargus) is a small ruminant and is widespread across China. This creature plays an important role in our ecological system. Although a few studies have been conducted to investigate pathogens harbored by this species, our knowledge of the virus diversity is still very sparse. In this study, we conducted the whole virome profiling of a rescue-failed roe deer, which revealed a kobuvirus (KoV), a bocaparvovirus (BoV), and multiple circular single-stranded viruses. These viruses were mainly recovered from the rectum, but PCR detection showed systematic infection of the KoV. Particularly, the KoV and BoV exhibited closely genetic relationships with bovine and canine viruses, respectively, highly suggesting the spillover of viruses from domestic animals to wildlife. Although these viruses were unlikely to have been responsible for the death of the animal, they provide additional data to understand the virus spectrum harbored by roe deer. The transmission of viruses between domestic animals and wildlife highlights the need for extensive investigation of wildlife viruses. Full article
Show Figures

Figure 1

11 pages, 3811 KiB  
Article
Next-Generation Sequencing Reveals Four Novel Viruses Associated with Calf Diarrhea
by Qi Wu, Jizong Li, Wei Wang, Jinzhu Zhou, Dandan Wang, Baochao Fan, Xuehan Zhang, Dongbo Sun, Ga Gong, Sizhu Suolang and Bin Li
Viruses 2021, 13(10), 1907; https://doi.org/10.3390/v13101907 - 23 Sep 2021
Cited by 17 | Viewed by 3522
Abstract
Calf diarrhea is one of the common diseases involved in the process of calf feeding. In this study, a sample of calf diarrhea that tested positive for bovine coronavirus and bovine astrovirus was subjected to high-throughput sequencing. The reassembly revealed the complete genomes [...] Read more.
Calf diarrhea is one of the common diseases involved in the process of calf feeding. In this study, a sample of calf diarrhea that tested positive for bovine coronavirus and bovine astrovirus was subjected to high-throughput sequencing. The reassembly revealed the complete genomes of bovine norovirus, bovine astrovirus, bovine kobuvirus, and the S gene of bovine coronavirus. Phylogenetic analysis showed that the ORF2 region of bovine astrovirus had the lowest similarity with other strains and gathered in the Mamastrovirus unclassified genogroup, suggesting a new serotype/genotype could appear. Compared with the most closely related strain, there are six amino acid mutation sites in the S gene of bovine coronavirus, most of which are located in the S1 subunit region. The bovine norovirus identified in our study was BNoV-GIII 2, based on the VP1 sequences. The bovine kobuvirus is distributed in the Aichi virus B genus; the P1 gene shows as highly variable, while the 3D gene is highly conserved. These findings enriched our knowledge of the viruses in the role of calf diarrhea, and help to develop an effective strategy for disease prevention and control. Full article
(This article belongs to the Special Issue Applications of Next-Generation Sequencing in Virus Discovery)
Show Figures

Figure 1

Back to TopTop