Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bovine cathelicidin genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4669 KiB  
Article
Co-Expression of Pig IL-2 and Fusion Bovine Cathelicidin Gene by Recombinant Plasmids in Yeast and Their Promotion of Mouse Antibacterial Defense
by Jianlin Chen, Junjie Peng, Changjun Ma, Linhan Zhang, Xueyin Wu, Hong Wei, Jianglin Li, Xuebin Lü and Rong Gao
Biology 2022, 11(10), 1491; https://doi.org/10.3390/biology11101491 - 12 Oct 2022
Cited by 4 | Viewed by 2149
Abstract
In order to develop an effective and safe immunomodulator to enhance the antimicrobial bioactivity and immunity of animals against infectious bacterial diseases, a recombinant plasmid pGAPZαA-IL2-B co-expressing pig interleukin-2 (PIL-2) and fused bovine cathelicidin (FBC) genes were constructed using the 2A self-cleavage technique. [...] Read more.
In order to develop an effective and safe immunomodulator to enhance the antimicrobial bioactivity and immunity of animals against infectious bacterial diseases, a recombinant plasmid pGAPZαA-IL2-B co-expressing pig interleukin-2 (PIL-2) and fused bovine cathelicidin (FBC) genes were constructed using the 2A self-cleavage technique. After being expressed in Pichia pastoris strain SMD1168, the recombinant yeast was administered orally to 5-week-old female ICR mice. The control mice were similarly dosed with P. pastoris with a blank plasmid or FBC recombinant plasmid alone. At 28 days post-treatment, the mice were challenged intraperitoneally with virulent strains of either E. coli or S. aureus. Compared with the control groups, the mice that received recombinant yeast co-expressing PIL-2/FBC manifested significant increases in the number of leukocytes, CD4+ and CD8+ T cells, IgG, and the gene expressions of TLRs(TLR1,4,6,9), antimicrobial peptides(CRP4 and CRAMP) and cytokines (IL-2, 4, 6, 7, 12, 15, 23, IFN-γ, and TNF-α) in the blood. Furthermore, the treated mice displayed significantly higher survival than the other two control groups after the challenge. These results suggest that the antimicrobial activity and immunity of animals can be effectively enhanced by the in vivo co-expression of IL-2 and the FBS gene, which can facilitate the development of new immunopotentiation molecules to overcome the infection of antibiotic-resistant bacteria. Full article
(This article belongs to the Special Issue Immune Response Regulation in Animals)
Show Figures

Figure 1

21 pages, 1503 KiB  
Article
Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows
by Zhangrui Cheng, Sergio Palma-Vera, Laura Buggiotti, Mazdak Salavati, Frank Becker, Dirk Werling, D. Claire Wathes and GplusE Consortium
Animals 2022, 12(16), 2146; https://doi.org/10.3390/ani12162146 - 21 Aug 2022
Cited by 11 | Viewed by 3793
Abstract
The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein [...] Read more.
The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection. Full article
(This article belongs to the Special Issue Clinical Mastitis and Intramammary Infections in Dairy Farms)
Show Figures

Figure 1

Back to TopTop