Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = bonded L-moves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1193 KB  
Article
Topology and Algebra of Bonded Knots and Braids
by Ioannis Diamantis, Louis H. Kauffman and Sofia Lambropoulou
Mathematics 2025, 13(20), 3260; https://doi.org/10.3390/math13203260 - 11 Oct 2025
Viewed by 742
Abstract
In this paper we present a detailed study of bonded knots and their related structures, integrating recent developments into a single framework. Bonded knots are classical knots endowed with embedded bonding arcs modeling physical or chemical bonds. We consider bonded knots in three [...] Read more.
In this paper we present a detailed study of bonded knots and their related structures, integrating recent developments into a single framework. Bonded knots are classical knots endowed with embedded bonding arcs modeling physical or chemical bonds. We consider bonded knots in three categories (long, standard, and tight) according to the type of bonds, and in two categories, topological vertex and rigid vertex, according to the allowed isotopy moves, and we define invariants for each category. We then develop the theory of bonded braids, the algebraic counterpart of bonded knots. We define the bonded braid monoid, with its generators and relations, and formulate the analogues of the Alexander and Markov theorems for bonded braids in the form of L-equivalence for bonded braids. Next, we introduce enhanced bonded knots and braids, incorporating two types of bonds (attracting and repelling) corresponding to different interactions. We define the enhanced bonded braid group and show how the bonded braid monoid embeds into this group. These models capture the topology of chains with inter and intra-chain bonds and suggest new invariants for classifying biological macromolecules. Full article
(This article belongs to the Section B: Geometry and Topology)
Show Figures

Figure 1

17 pages, 9347 KB  
Article
Unraveling the Reaction Mechanism of HCHO Catalytic Oxidation on Pristine Co3O4 (110) Surface: A Theoretical Study
by Rong Li, Tingting Huang, Yu Huang, Meijuan Chen, Shun-cheng Lee, Wingkei Ho and Junji Cao
Catalysts 2022, 12(5), 560; https://doi.org/10.3390/catal12050560 - 19 May 2022
Cited by 12 | Viewed by 3430
Abstract
Various reaction mechanisms for the catalytic degradation of formaldehyde (HCHO) remain to be debated. Density functional theory (DFT) was applied to investigate whether the catalytic oxidation of HCHO on pristine Co3O4 (110) surface follows the Mars-van Krevelen (MvK) mechanism or [...] Read more.
Various reaction mechanisms for the catalytic degradation of formaldehyde (HCHO) remain to be debated. Density functional theory (DFT) was applied to investigate whether the catalytic oxidation of HCHO on pristine Co3O4 (110) surface follows the Mars-van Krevelen (MvK) mechanism or the Langmuir–Hinshelwood (L-H) mechanism. Firstly, HCHO and O2 co-adsorb on the surface and two H atoms from HCHO are peculiarly prone to transfer to O2, forming CO and HOOH. For the MvK mechanism, CO2 is generated through CO grabbing a lattice oxygen. Meanwhile, the O–O bond of HOOH is broken into two OH groups. One OH fills the oxygen vacancy and its H atom moves to another OH group for H2O formation. For the L-H mechanism, CO directly obtains one OH group to generate COOH. Subsequently, the H atom of COOH transfers to another OH group along with CO2 and H2O generation. Both two mechanisms exhibit a similar maximum activation barrier. The lattice oxygen in the MvK mechanism and the surface-absorbed OH group in the L-H mechanism are the key reactive oxygen species. The small difference in energetic span further suggests that the catalytic cycle through the two mechanisms is feasible. This theoretical study provides new insight into the catalytic reaction path of HCHO oxidation on pristine Co3O4 surface. Full article
(This article belongs to the Special Issue Environmental Catalysis for Air Pollution Applications)
Show Figures

Figure 1

20 pages, 7311 KB  
Article
Recognition Dynamics of Cancer Mutations on the ERp57-Tapasin Interface
by Monikaben Padariya, Umesh Kalathiya, Douglas R. Houston and Javier Antonio Alfaro
Cancers 2020, 12(3), 737; https://doi.org/10.3390/cancers12030737 - 20 Mar 2020
Cited by 9 | Viewed by 4451
Abstract
Down regulation of the major histocompatibility class (MHC) I pathway plays an important role in tumour development, and can be achieved by suppression of HLA expression or mutations in the MHC peptide-binding pocket. The peptide-loading complex (PLC) loads peptides on the MHC-I molecule [...] Read more.
Down regulation of the major histocompatibility class (MHC) I pathway plays an important role in tumour development, and can be achieved by suppression of HLA expression or mutations in the MHC peptide-binding pocket. The peptide-loading complex (PLC) loads peptides on the MHC-I molecule in a dynamic multi-step assembly process. The effects of cancer variants on ERp57 and tapasin components from the MHC-I pathway is less known, and they could have an impact on antigen presentation. Applying computational approaches, we analysed whether the ERp57-tapasin binding might be altered by missense mutations. The variants H408R(ERp57) and P96L, D100A, G183R(tapasin) at the protein–protein interface improved protein stability (ΔΔG) during the initial screen of 14 different variants. The H408R(ERp57) and P96L(tapasin) variants, located close to disulphide bonds, were further studied by molecular dynamics (MD). Identifying intramolecular a-a’ domain interactions, MD revealed open and closed conformations of ERp57 in the presence and absence of tapasin. In wild-type and mutant ERp57-tapasin complexes, residues Val97, Ser98, Tyr100, Trp405, Gly407(ERp57) and Asn94, Cys95, Arg97, Asp100(tapasin) formed common H-bond interactions. Moreover, comparing the H-bond networks for P96L and H408R with each other, suggests that P96L(tapasin) improved ERp57-tapasin binding more than the H408R(ERp57) mutant. During MD, the C-terminus domain (that binds MHC-I) in tapasin from the ERp57(H408R)-tapasin complex moved away from the PLC, whereas in the ERp57-tapasin(P96L) system was oppositely displaced. These findings can have implications for the function of PLC and, ultimately, for the presentation of MHC-I peptide complex on the tumour cell surface. Full article
(This article belongs to the Special Issue New Insights into Cancer Vaccines and Immunotherapy)
Show Figures

Graphical abstract

14 pages, 5243 KB  
Proceeding Paper
Intermolecular Interactions Required for the Formation of Liquid Microcrystals Produced by the Precursors Self-Organized from Protonated TPP Dimers
by Alexander Udal’tsov
Proceedings 2018, 2(14), 1112; https://doi.org/10.3390/IECC_2018-05244 - 21 May 2018
Cited by 1 | Viewed by 1806
Abstract
Features of solute-solvent intermolecular interaction establishing hydrogen bonds were studied in view of proton sharing in the O---H+–O moiety that is the prerequisite for proton moving through water. Liquid microcrystals are expected to be formed due to the protons moving through [...] Read more.
Features of solute-solvent intermolecular interaction establishing hydrogen bonds were studied in view of proton sharing in the O---H+–O moiety that is the prerequisite for proton moving through water. Liquid microcrystals are expected to be formed due to the protons moving through water confined in their precursors. Among the different oxygen-containing organic solvents well-dissolved in water, tetrahydrofuran (THF) has been found the most suitable since it forms a molecular complex with carbon dioxide dissolved in water producing the ions H+ and (HCO3). This three-component complex exhibits in infrared spectra vibrational bands characterizing the complex and the proton sharing in the O---H+–O moiety. Assemblies consisting of mono- protonated meso-tetraphenylporphine (TPP) dimers self-organized into submicroscopic particles in solution and water with 0.86 mol·L−1 THF have been investigated by infrared spectroscopy, SEM, and AFM in thin layers. Earlier found tight water covering the submicroscopic particles is proved to exhibit an ordered and non-ordered local areas on the surface. Molecular characteristics estimated for the three-component complex involving THF suggest that the complex together with the TPP dimers partakes in the crystallization process providing protons moving through water. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Crystals)
Show Figures

Figure 1

Back to TopTop