Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = blue steel roofs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 36625 KiB  
Article
Mapping Blue and Red Color-Coated Steel Sheet Roof Buildings over China Using Sentinel-2A/B MSIL2A Images
by Alim Samat, Paolo Gamba, Wei Wang, Jieqiong Luo, Erzhu Li, Sicong Liu, Peijun Du and Jilili Abuduwaili
Remote Sens. 2022, 14(1), 230; https://doi.org/10.3390/rs14010230 - 5 Jan 2022
Cited by 12 | Viewed by 7131
Abstract
Accurate and efficiently updated information on color-coated steel sheet (CCSS) roof materials in urban areas is of great significance for understanding the potential impact, challenges, and issues of these materials on urban sustainable development, human health, and the environment. Thanks to the development [...] Read more.
Accurate and efficiently updated information on color-coated steel sheet (CCSS) roof materials in urban areas is of great significance for understanding the potential impact, challenges, and issues of these materials on urban sustainable development, human health, and the environment. Thanks to the development of Earth observation technologies, remote sensing (RS) provides abundant data to identify and map CCSS materials with different colors in urban areas. However, existing studies are still quite challenging with regards to the data collection and processing costs, particularly in wide geographical areas. Combining free access high-resolution RS data and a cloud computing platform, i.e., Sentinel-2A/B data sets and Google Earth Engine (GEE), this study aims at CCSS material identification and mapping. Specifically, six novel spectral indexes that use Sentinel-2A/B MSIL2A data are proposed for blue and red CCSS material identification, namely the normalized difference blue building index (NDBBI), the normalized difference red building index NDRBI, the enhanced blue building index (EBBI), the enhanced red building index (ERBI), the logical blue building index (LBBI) and the logical red building index (LRBI). These indexes are qualitatively and quantitatively evaluated on a very large number of urban sites all over the P.R. China and compared with the state-of-the-art redness and blueness indexes (RI and BI, respectively). The results demonstrate that the proposed indexes, specifically the LRBI and LBBI, are highly effective in visual evaluation, clearly detecting and discriminating blue and red CCSS covers from other urban materials. Results show that urban areas from the northern parts of P.R. China have larger proportions of blue and red CCSS materials, and areas of blue and red CCSS material buildings are positively correlated with population and urban size at the provincial level across China. Full article
Show Figures

Figure 1

20 pages, 103083 KiB  
Article
Exploring the Impacts and Temporal Variations of Different Building Roof Types on Surface Urban Heat Island
by Yingbin Deng, Renrong Chen, Yichun Xie, Jianhui Xu, Ji Yang and Wenyue Liao
Remote Sens. 2021, 13(14), 2840; https://doi.org/10.3390/rs13142840 - 20 Jul 2021
Cited by 10 | Viewed by 4506
Abstract
This study examined the impact of different types of building roofs on urban heat islands. This was carried out using building roof data from remotely sensed Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) imagery. The roofs captured included white [...] Read more.
This study examined the impact of different types of building roofs on urban heat islands. This was carried out using building roof data from remotely sensed Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) imagery. The roofs captured included white surface, blue steel, dark metal, other dark material, and residential roofs; these roofs were compared alongside three natural land covers (i.e., forest trees, grassland, and water). We also collected ancillary data including building height, building density, and distance to the city center. The impacts of various building roofs on land surface temperature (LST) were examined by analyzing their correlation and temporal variations. First, we examined the LST characteristics of five building roof types and three natural land covers using boxplots and variance analysis with post hoc tests. Then, multivariate regression analysis was used to explore the impact of building roofs on LST. There were three key findings in the results. First, the mean LSTs for five different building roofs statistically differed from each other; these differences were more significant during the hot season than the cool season. Second, the impact of the five types of roofs on LSTs varied considerably from each other. Lastly, the contribution of the five roof types to LST variance was more substantial during the cool season. These findings unveil specific urban heat retention drivers, in which different types of building roofs are one such driver. The outcomes from this research may help policymakers develop more effective strategies to address the surface urban heat island phenomenon and its related health concerns. Full article
Show Figures

Graphical abstract

18 pages, 9228 KiB  
Article
A Novel Index to Detect Vegetation in Urban Areas Using UAV-Based Multispectral Images
by Geunsang Lee, Jeewook Hwang and Sangho Cho
Appl. Sci. 2021, 11(8), 3472; https://doi.org/10.3390/app11083472 - 13 Apr 2021
Cited by 35 | Viewed by 6333
Abstract
Unmanned aerial vehicles (UAVs) equipped with high-resolution multispectral cameras have increasingly been used in urban planning, landscape management, and environmental monitoring as an important complement to traditional satellite remote sensing systems. Interest in urban regeneration projects is on the rise in Korea, and [...] Read more.
Unmanned aerial vehicles (UAVs) equipped with high-resolution multispectral cameras have increasingly been used in urban planning, landscape management, and environmental monitoring as an important complement to traditional satellite remote sensing systems. Interest in urban regeneration projects is on the rise in Korea, and the results of UAV-based urban vegetation analysis are in the spotlight as important data to effectively promote urban regeneration projects. Vegetation indices have been used to obtain vegetation information in a wide area using the multispectral bands of satellites. UAV images have recently been used to obtain vegetation information in a more rapid and precise manner. In this study, multispectral images were acquired using a UAV equipped with a Micasense RedEde MX camera to analyze vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Blue Normalized Difference Vegetation Index (BNDVI), Red Green Blue Vegetation Index (RGBVI), Green Red Vegetation Index (GRVI), and Soil Adjusted Vegetation Index (SAVI). However, in the process of analyzing urban vegetation using the existing vegetation indices, it became clear that the vegetation index values of long-run steel roofing, waterproof coated roofs, and urethane-coated areas are often similar to, or slightly higher than, those of grass. In order to improve the problem of misclassification of vegetation, various equations were tested by combining multispectral bands. Kappa coefficient analysis showed that the squared Red-Blue NDVI index produced the best results when analyzing vegetation reflecting urban land cover. The novel vegetation index developed in this study will be very useful for effective analysis of vegetation in urban areas with various types of land cover, such as long-run steel roofing, waterproof coated roofs, and urethane-coated areas. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5287 KiB  
Article
Extraction and Analysis of Blue Steel Roofs Information Based on CNN Using Gaofen-2 Imageries
by Meiwei Sun, Yingbin Deng, Miao Li, Hao Jiang, Haoling Huang, Wenyue Liao, Yangxiaoyue Liu, Ji Yang and Yong Li
Sensors 2020, 20(16), 4655; https://doi.org/10.3390/s20164655 - 18 Aug 2020
Cited by 12 | Viewed by 3175
Abstract
Blue steel roof is advantageous for its low cost, durability, and ease of installation. It is generally used by industrial areas. The accurate and rapid mapping of blue steel roof is important for the preliminary assessment of inefficient industrial areas and is one [...] Read more.
Blue steel roof is advantageous for its low cost, durability, and ease of installation. It is generally used by industrial areas. The accurate and rapid mapping of blue steel roof is important for the preliminary assessment of inefficient industrial areas and is one of the key elements for quantifying environmental issues like urban heat islands. Here, the DeeplabV3+ semantic segmentation neural network based on GaoFen-2 images was used to analyze the quantity and spatial distribution of blue steel roofs in the Nanhai district, Foshan (including the towns of Shishan, Guicheng, Dali, and Lishui), which is the important manufacturing industry base of China. We found that: (1) the DeeplabV3+ performs well with an overall accuracy of 92%, higher than the maximum likelihood classification; (2) the distribution of blue steel roofs was not even across the whole study area, but they were evenly distributed within the town scale; and (3) strong positive correlation was observed between blue steel roofs area and industrial gross output. These results not only can be used to detect the inefficient industrial areas for regional planning but also provide fundamental data for studies of urban environmental issues. Full article
(This article belongs to the Special Issue Recent Advances in Multi- and Hyperspectral Image Analysis)
Show Figures

Figure 1

Back to TopTop