Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = blockchain-enabled IoT (BIoT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1185 KiB  
Review
Integrating Blockchains with the IoT: A Review of Architectures and Marine Use Cases
by Andreas Polyvios Delladetsimas, Stamatis Papangelou, Elias Iosif and George Giaglis
Computers 2024, 13(12), 329; https://doi.org/10.3390/computers13120329 - 6 Dec 2024
Cited by 2 | Viewed by 2607
Abstract
This review examines the integration of blockchain technology with the IoT in the Marine Internet of Things (MIoT) and Internet of Underwater Things (IoUT), with applications in areas such as oceanographic monitoring and naval defense. These environments present distinct challenges, including a limited [...] Read more.
This review examines the integration of blockchain technology with the IoT in the Marine Internet of Things (MIoT) and Internet of Underwater Things (IoUT), with applications in areas such as oceanographic monitoring and naval defense. These environments present distinct challenges, including a limited communication bandwidth, energy constraints, and secure data handling needs. Enhancing BIoT systems requires a strategic selection of computing paradigms, such as edge and fog computing, and lightweight nodes to reduce latency and improve data processing in resource-limited settings. While a blockchain can improve data integrity and security, it can also introduce complexities, including interoperability issues, high energy consumption, standardization challenges, and costly transitions from legacy systems. The solutions reviewed here include lightweight consensus mechanisms to reduce computational demands. They also utilize established platforms, such as Ethereum and Hyperledger, or custom blockchains designed to meet marine-specific requirements. Additional approaches incorporate technologies such as fog and edge layers, software-defined networking (SDN), the InterPlanetary File System (IPFS) for decentralized storage, and AI-enhanced security measures, all adapted to each application’s needs. Future research will need to prioritize scalability, energy efficiency, and interoperability for effective BIoT deployment. Full article
(This article belongs to the Special Issue When Blockchain Meets IoT: Challenges and Potentials)
Show Figures

Figure 1

22 pages, 3155 KiB  
Article
Situ-Oracle: A Learning-Based Situation Analysis Framework for Blockchain-Based IoT Systems
by Hongyi Bian, Wensheng Zhang and Carl K. Chang
Blockchains 2024, 2(2), 173-194; https://doi.org/10.3390/blockchains2020009 - 22 May 2024
Cited by 4 | Viewed by 2150
Abstract
The decentralized nature of blockchain enables data traceability, transparency, and immutability as complementary security features to the existing Internet of Things (IoT) systems. These Blockchain-based IoT (BIoT) systems aim to mitigate security risks such as malicious control, data leakage, and dishonesty often found [...] Read more.
The decentralized nature of blockchain enables data traceability, transparency, and immutability as complementary security features to the existing Internet of Things (IoT) systems. These Blockchain-based IoT (BIoT) systems aim to mitigate security risks such as malicious control, data leakage, and dishonesty often found in traditional cloud-based, vendor-specific IoT networks. As we steadily advance into the era of situation-aware IoT, the use of machine learning (ML) techniques has become essential for synthesizing situations based on sensory contexts. However, the challenge to integrate learning-based situation awareness with BIoT systems restricts the full potential of such integration. This is primarily due to the conflicts between the deterministic nature of smart contracts and the non-deterministic nature of machine learning, as well as the high costs of conducting machine learning on blockchain. To address the challenge, we propose a framework named Situ-Oracle. With the framework, a computation oracle of the blockchain ecosystem is leveraged to provide situation analysis as a service, based on Recurrent Neural Network (RNN)-based learning models tailored for the Situ model, and specifically designed smart contracts are deployed as intermediary communication channels between the IoT devices and the computation oracle. We used smart homes as a case study to demonstrate the framework design. Subsequently, system-wide evaluations were conducted over a physically constructed BIoT system. The results indicate that the proposed framework achieves better situation analysis accuracy (above 95%) and improves gas consumption as well as network throughput and latency when compared to baseline systems (on-chain learning or off-chain model verification). Overall, the paper presents a promising approach for improving situation analysis for BIoT systems, with potential applications in various domains such as smart homes, healthcare, and industrial automation. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

25 pages, 5452 KiB  
Article
Trust-Based Beacon Node Localization Algorithm for Underwater Networks by Exploiting Nature Inspired Meta-Heuristic Strategies
by Umar Draz, Muhammad Hasanain Chaudary, Tariq Ali, Abid Sohail, Muhammad Irfan and Grzegorz Nowakowski
Electronics 2022, 11(24), 4131; https://doi.org/10.3390/electronics11244131 - 11 Dec 2022
Cited by 7 | Viewed by 1927
Abstract
Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater [...] Read more.
Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater Things (IoUTs) objects and unreliable beacon node communication between purpose oriented IoT-enabled networks. Recently, new technologies such as blockchain (BC) and the IoUTs have been used to reduce the issues but there are still some research gaps; for example, unreliable beacon messages for node acquisition have significant impacts on node identification and localization and many constrained node resources, etc. Further, the uncertainty of acoustic communication and the environment itself become problems when designing a trust-based framework for the IoUTs. In this research, a trust-based hybrid BC-enabled beacon node localization (THBNL) framework is proposed to employ a secure strategy for beacon node localization (BNL) to mine the underwater localized nodes via the hybrid blockchain enabled beacon node localization (HB2NL) algorithm. This framework helps to merge two disciplines; it is hybrid because it follows the nature and bio inspired meta heuristics algorithms for scheduling the beacon nodes. The performance of the proposed approach is also evaluated for different factors such as node losses, packet delivery ratios, residual and energy consumption and waiting time analysis, etc. These findings show that the work done so far has been successful in achieving the required goals while remaining within the system parameters. Full article
(This article belongs to the Special Issue Advanced Underwater Acoustic Systems for UASNs)
Show Figures

Figure 1

17 pages, 4004 KiB  
Article
Optimal Machine Learning Based Privacy Preserving Blockchain Assisted Internet of Things with Smart Cities Environment
by A. Al-Qarafi, Fadwa Alrowais, Saud S. Alotaibi, Nadhem Nemri, Fahd N. Al-Wesabi, Mesfer Al Duhayyim, Radwa Marzouk, Mahmoud Othman and M. Al-Shabi
Appl. Sci. 2022, 12(12), 5893; https://doi.org/10.3390/app12125893 - 9 Jun 2022
Cited by 59 | Viewed by 4363
Abstract
Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are several [...] Read more.
Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are several challenges under these applications containing privacy, data security, mining, and visualization. The blockchain-assisted IoT application (BIoT) is offering new urban computing to secure smart cities. The blockchain is a secure and transparent data-sharing decentralized platform, so BIoT is suggested as the optimum solution to the aforementioned challenges. In this view, this study develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving BIoT with Smart Cities Environment, called OMLIDS-PBIoT technique. The presented OMLIDS-PBIoT technique exploits BC and ML techniques to accomplish security in the smart city environment. For attaining this, the presented OMLIDS-PBIoT technique employs data pre-processing in the initial stage to transform the data into a compatible format. Moreover, a golden eagle optimization (GEO)-based feature selection (FS) model is designed to derive useful feature subsets. In addition, a heap-based optimizer (HBO) with random vector functional link network (RVFL) model was utilized for intrusion classification. Additionally, blockchain technology is exploited for secure data transmission in the IoT-enabled smart city environment. The performance validation of the OMLIDS-PBIoT technique is carried out using benchmark datasets, and the outcomes are inspected under numerous factors. The experimental results demonstrate the superiority of the OMLIDS-PBIoT technique over recent approaches. Full article
(This article belongs to the Special Issue Machine Learning for Blockchain and IoT Systems in Smart Cities)
Show Figures

Figure 1

Back to TopTop