Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = bispecific single-chain diabody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1466 KB  
Article
Functional Domain Order of an Anti-EGFR × Anti-CD16 Bispecific Diabody Involving NK Cell Activation
by Atsushi Kuwahara, Keisuke Nagai, Takeshi Nakanishi, Izumi Kumagai and Ryutaro Asano
Int. J. Mol. Sci. 2020, 21(23), 8914; https://doi.org/10.3390/ijms21238914 - 24 Nov 2020
Cited by 13 | Viewed by 3815
Abstract
Bispecific antibodies (bsAbs) have emerged as promising therapeutics. A bispecific diabody (bsDb) is a small bsAb consisting of two distinct chimeric single-chain components, with two possible arrangements of the domains. We previously reported the effect of domain order on the function of a [...] Read more.
Bispecific antibodies (bsAbs) have emerged as promising therapeutics. A bispecific diabody (bsDb) is a small bsAb consisting of two distinct chimeric single-chain components, with two possible arrangements of the domains. We previously reported the effect of domain order on the function of a humanized bsDb targeting the epidermal growth factor receptor (EGFR) on cancer cells, and CD3 on T cells. Notably, the co-localization of a T-cell receptor (TCR) with CD3 is bulky, potentially affecting the cross-linking ability of bsDbs, due to steric hindrance. Here, we constructed and evaluated humanized bsDbs, with different domain orders, targeting EGFR and CD16 on natural killer (NK) cells (hEx16-Dbs). We predicted minimal effects due to steric hindrance, as CD16 lacks accessory molecules. Interestingly, one domain arrangement displayed superior cytotoxicity in growth inhibition assays, despite similar cross-linking abilities for both domain orders tested. In hEx16-Dbs specifically, domain order might affect the agonistic activity of the anti-CD16 portion, which was supported by a cytokine production test, and likely contributed to the superiority of one of the hEx16-Dbs. Our results indicate that both the target antigen and mode of action of an antibody must be considered in the construction of highly functional bsAbs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 1675 KB  
Article
Engineering a Novel Antibody-Peptide Bispecific Fusion Protein Against MERS-CoV
by Lili Wang, Jiyan Xu, Yu Kong, Ruiying Liang, Wei Li, Jinyao Li, Jun Lu, Dimiter S. Dimitrov, Fei Yu, Yanling Wu and Tianlei Ying
Antibodies 2019, 8(4), 53; https://doi.org/10.3390/antib8040053 - 4 Nov 2019
Cited by 10 | Viewed by 8926
Abstract
In recent years, tremendous efforts have been made in the engineering of bispecific or multi-specific antibody-based therapeutics by combining two or more functional antigen-recognizing elements into a single construct. However, to the best of our knowledge there has been no reported cases of [...] Read more.
In recent years, tremendous efforts have been made in the engineering of bispecific or multi-specific antibody-based therapeutics by combining two or more functional antigen-recognizing elements into a single construct. However, to the best of our knowledge there has been no reported cases of effective antiviral antibody-peptide bispecific fusion proteins. We previously developed potent fully human monoclonal antibodies and inhibitory peptides against Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a novel coronavirus that causes severe acute respiratory illness with high mortality. Here, we describe the generation of antibody-peptide bispecific fusion proteins, each of which contains an anti-MERS-CoV single-chain antibody m336 (or normal human IgG1 CH3 domain as a control) linked with, or without, a MERS-CoV fusion inhibitory peptide HR2P. We found that one of these fusion proteins, designated as m336 diabody-pep, exhibited more potent inhibitory activity than the antibody or the peptide alone against pseudotyped MERS-CoV infection and MERS-CoV S protein-mediated cell-cell fusion, suggesting its potential to be developed as an effective bispecific immunotherapeutic for clinical use. Full article
Show Figures

Figure 1

20 pages, 5097 KB  
Article
Optimized Expression and Characterization of a Novel Fully Human Bispecific Single-Chain Diabody Targeting Vascular Endothelial Growth Factor165 and Programmed Death-1 in Pichia pastoris and Evaluation of Antitumor Activity In Vivo
by Chenghao Xiong, Yingqing Mao, Tao Wu, Nannan Kang, Mingjun Zhao, Rongrong Di, Xiaoping Li, Xuemei Ji and Yu Liu
Int. J. Mol. Sci. 2018, 19(10), 2900; https://doi.org/10.3390/ijms19102900 - 25 Sep 2018
Cited by 17 | Viewed by 5994
Abstract
Bispecific antibodies, which can bind to two different epitopes on the same or different antigens simultaneously, have recently emerged as attractive candidates for study in various diseases. Our present study successfully constructs and expresses a fully human, bispecific, single-chain diabody (BsDb) that can [...] Read more.
Bispecific antibodies, which can bind to two different epitopes on the same or different antigens simultaneously, have recently emerged as attractive candidates for study in various diseases. Our present study successfully constructs and expresses a fully human, bispecific, single-chain diabody (BsDb) that can bind to vascular endothelial growth factor 165 (VEGF165) and programmed death-1 (PD-1) in Pichia pastoris. Under the optimal expression conditions (methanol concentration, 1%; pH, 4.0; inoculum density, OD600 = 4, and the induction time, 96 h), the maximum production level of this BsDb is achieved at approximately 20 mg/L. The recombinant BsDb is purified in one step using nickel-nitrilotriacetic acid (Ni-NTA) column chromatography with a purity of more than 95%. Indirect enzyme-linked immune sorbent assay (ELISA) and sandwich ELISA analyses show that purified BsDb can bind specifically to VEGF165 and PD-1 simultaneously with affinities of 124.78 nM and 25.07 nM, respectively. Additionally, the BsDb not only effectively inhibits VEGF165-stimulated proliferation, migration, and tube formation in primary human umbilical vein endothelial cells (HUVECs), but also significantly improves proliferation and INF-γ production of activated T cells by blocking PD-1/PD-L1 co-stimulation. Furthermore, the BsDb displays potent antitumor activity in mice bearing HT29 xenograft tumors by inhibiting tumor angiogenesis and activating immune responses in the tumor microenvironment. Based on these results, we have prepared a potential bispecific antibody drug that can co-target both VEGF165 and PD-1 for the first time. This work provides a stable foundation for the development of new strategies by the combination of an angiogenesis inhibition and immune checkpoint blockade for cancer therapy. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

30 pages, 2260 KB  
Article
Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer
by Adam R. Root, Wei Cao, Bilian Li, Peter LaPan, Caryl Meade, Jocelyn Sanford, Macy Jin, Cliona O’Sullivan, Emma Cummins, Matthew Lambert, Alfredo D. Sheehan, Weijun Ma, Scott Gatto, Kelvin Kerns, Khetemenee Lam, Aaron M. D’Antona, Lily Zhu, William A. Brady, Susan Benard, Amy King, Tao He, Lisa Racie, Maya Arai, Dianah Barrett, Wayne Stochaj, Edward R. LaVallie, James R. Apgar, Kristine Svenson, Lidia Mosyak, Yinhua Yang, Gurunadh R. Chichili, Liqin Liu, Hua Li, Steve Burke, Syd Johnson, Ralph Alderson, William J. J. Finlay, Laura Lin, Stéphane Olland, William Somers, Ezio Bonvini, Hans-Peter Gerber, Chad May, Paul A. Moore, Lioudmila Tchistiakova and Laird Bloomadd Show full author list remove Hide full author list
Antibodies 2016, 5(1), 6; https://doi.org/10.3390/antib5010006 - 4 Mar 2016
Cited by 81 | Viewed by 23188
Abstract
Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. [...] Read more.
Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin. Full article
(This article belongs to the Special Issue Advances in Bispecific Antibodies)
Show Figures

Figure 1

Back to TopTop