Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bis-arylureas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2381 KiB  
Review
Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees
by Alessia Catalano, Jessica Ceramella, Domenico Iacopetta, Annaluisa Mariconda, Elisabetta Scali, Maria Grazia Bonomo, Carmela Saturnino, Pasquale Longo, Stefano Aquaro and Maria Stefania Sinicropi
Antibiotics 2022, 11(7), 947; https://doi.org/10.3390/antibiotics11070947 - 14 Jul 2022
Cited by 10 | Viewed by 3914
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was [...] Read more.
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea. Full article
(This article belongs to the Special Issue Searching for Small Molecules as Antimicrobials)
Show Figures

Figure 1

12 pages, 8710 KiB  
Article
Screening of Big Pharma’s Library against Various in-house Biological Targets
by Damijan Knez, Stanislav Gobec and Martina Hrast
Molecules 2022, 27(14), 4484; https://doi.org/10.3390/molecules27144484 - 13 Jul 2022
Cited by 2 | Viewed by 1933
Abstract
Open innovation initiatives provide opportunities for collaboration and sharing of knowledge and experience between industry, academia, and government institutions. Through open innovation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research and development projects to a broader scientific [...] Read more.
Open innovation initiatives provide opportunities for collaboration and sharing of knowledge and experience between industry, academia, and government institutions. Through open innovation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research and development projects to a broader scientific community for testing in academic drug discovery projects. These compounds are predominantly drug-like and cover a broad range of molecular targets. They could potentially interact with other enzymes, receptors, transporters, and ion channels of interest. The Mini Library was tested on seven in-house enzymes (bacterial MurA, MurC ligase, and DdlB enzyme, human MAO-A/B, human BChE, and murine AChE), and several hits were identified. A follow-up series of structural analogues provided by Merck gave a more detailed insight into the accessibility and the quality of the hit compounds. For example, sartan derivatives were moderate inhibitors of MurC, whereas bisarylureas were potent, selective, nanomolar inhibitors of hMAO-B. Importantly, 3-n-butyl-substituted indoles were identified as low nanomolar selective inhibitors of hBChE. All in all, the hit derivatives provide new starting points for the further exploration of the chemical space of high-quality enzyme inhibitors. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 7788 KiB  
Review
The Different Facets of Triclocarban: A Review
by Domenico Iacopetta, Alessia Catalano, Jessica Ceramella, Carmela Saturnino, Lara Salvagno, Ileana Ielo, Dario Drommi, Elisabetta Scali, Maria Rosaria Plutino, Giuseppe Rosace and Maria Stefania Sinicropi
Molecules 2021, 26(9), 2811; https://doi.org/10.3390/molecules26092811 - 10 May 2021
Cited by 62 | Viewed by 6406
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human [...] Read more.
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed. Full article
(This article belongs to the Special Issue Materials for Healthcare)
Show Figures

Figure 1

25 pages, 12725 KiB  
Review
Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics
by Alessia Catalano, Domenico Iacopetta, Michele Pellegrino, Stefano Aquaro, Carlo Franchini and Maria Stefania Sinicropi
Antibiotics 2021, 10(1), 92; https://doi.org/10.3390/antibiotics10010092 - 19 Jan 2021
Cited by 46 | Viewed by 4611
Abstract
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and [...] Read more.
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today’s COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events. Full article
(This article belongs to the Special Issue Antibiotic Stewardship during COVID-19)
22 pages, 3355 KiB  
Article
Bisarylureas Based on 1H-Pyrazolo[3,4-d]pyrimidine Scaffold as Novel Pan-RAF Inhibitors with Potent Anti-Proliferative Activities: Structure-Based Design, Synthesis, Biological Evaluation and Molecular Modelling Studies
by Yu Fu, Yuanyuan Wang, Shanhe Wan, Zhonghuang Li, Guangfa Wang, Jiajie Zhang and Xiaoyun Wu
Molecules 2017, 22(4), 542; https://doi.org/10.3390/molecules22040542 - 29 Mar 2017
Cited by 8 | Viewed by 6394
Abstract
RAF (Ras activating factor) kinases are important and attractive targets for cancer therapy. With the aim of discovering RAF inhibitors that bind to DFG-out inactive conformation created by the movement of Asp-Phe-Gly (DFG), we conducted structure-based drug design using the X-ray cocrystal structures [...] Read more.
RAF (Ras activating factor) kinases are important and attractive targets for cancer therapy. With the aim of discovering RAF inhibitors that bind to DFG-out inactive conformation created by the movement of Asp-Phe-Gly (DFG), we conducted structure-based drug design using the X-ray cocrystal structures of BRAF (v-raf murine sarcoma viral oncogene homolog B1), starting from bisarylurea derivative based on 1H-pyrazolo[3,4-d]pyrimidine scaffold 1a. Most of the synthesized compounds showed good to excellent inhibitory activities against BRAFV600E kinase, possessed moderate to potent anti-proliferative activities against four tumor cell lines (A375, HT-29, PC-3 and A549) and good selectivity towards cancer cells rather normal cells (Madin-Darby canine kidney, MDCK). The most promising compound, 1v, exhibited potent inhibitory activity against not only BRAFV600E (half maximal inhibitory concentration, IC50 = 23.6 nM) but also wild-type BRAF (IC50 = 51.5 nM) and C-RAF (IC50 = 8.5 nM), and effective cellular anti-proliferative activities against A375, HT-29, PC-3 and A549 cell lines as well as a very good selectivity profile. Moreover, compound 1v mainly arrested the A375 cell line in the G0/G1 stage, and showed significant suppression of MEK (mitogen-activated protein kinase kinase) phosphorylation in A375 and HT-29 cell lines. Taken together, the optimal compound 1v showed excellent in vitro potency as a pan-RAF inhibitor. In addition, the promise of compound 1v was further confirmed by molecular dynamics simulation and binding free energy calculations. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop