Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = biomimetic immunoassay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4553 KiB  
Article
A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I
by Yun Hui, Weijun Kong, Weiliang Shu, Zhiting Peng, Fengshan Shen, Mingyang Jiang, Zhen Xu, Tianzhun Wu, Wenhua Zhou and Xue-Feng Yu
Chemosensors 2024, 12(10), 214; https://doi.org/10.3390/chemosensors12100214 - 16 Oct 2024
Viewed by 1352
Abstract
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome [...] Read more.
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome surface microstructures to achieve single-layer microbead arrays and integrated microelectrode arrays (MEAs) for ECL detection was microfabricated. Ru@SiO2 nanoparticles were prepared as signal amplificators labeling immunomagnetic beads. Dendrimer-encapsulated platinum nanoparticles (Pt DENs) were electrochemically modified on ITO MEAs. The resulting Pt DEN-modified ITO MEAs preserved good optical transparency and exhibited an approximately 20-fold ECL signal amplification compared to that obtained from bare ITO. The method made full use of the biomimetic chip with Pt DENs to develop single-layer immunomagnetic bead arrays with increasingly catalyzed electrochemical oxidation of the [Ru(bpy)3]2+–TPA system. Consequently, a limit of detection calculated as 0.38 pg/mL (S/N = 3) was obtained with excellent selectivity, demonstrating significant potential for the detection of cTnI in clinical diagnostics. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing, 2nd Edition)
Show Figures

Figure 1

14 pages, 2987 KiB  
Article
A Visual Distance-Based Capillary Immunoassay Using Biomimetic Polymer Nanoparticles for Highly Sensitive and Specific C-Reactive Protein Quantification
by Ruodong Huang, Zhenbo Liu, Xinlin Jiang, Junqi Huang, Ping Zhou, Zongxia Mou, Dong Ma and Xin Cui
Int. J. Mol. Sci. 2024, 25(18), 9771; https://doi.org/10.3390/ijms25189771 - 10 Sep 2024
Cited by 1 | Viewed by 1463
Abstract
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop [...] Read more.
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop a visual CRP-quantification assay using affordable glass capillaries. The PMPC nanoparticles, synthesized via reflux precipitation polymerization, demonstrated multivalent binding capabilities, enabling rapid and specific CRP capture. In the presence of CRP, PMPC nanoparticles formed sandwich structures with magnetic nanoparticles functionalized with CRP antibodies, thereby enhancing detection sensitivity and specificity. These sandwich complexes were magnetically accumulated into visible and quantifiable stacks within the glass capillaries, allowing for the rapid, sensitive, and specific quantification of CRP concentrations with a detection limit of 57.5 pg/mL and a range spanning from 0 to 5000 ng/mL. The proposed visual distance-based capillary biosensor shows great potential in routine clinical diagnosis as well as point-of-care testing (POCT) in resource-limited settings. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

14 pages, 4752 KiB  
Article
Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A
by Hongshuai Zhu, Bingfeng Wang and Yingju Liu
Biosensors 2023, 13(6), 665; https://doi.org/10.3390/bios13060665 - 19 Jun 2023
Cited by 2 | Viewed by 2510
Abstract
The development of multifunctional biomimetic nanozymes with high catalytic activity and sensitive response is rapidly advancing. The hollow nanostructures, including metal hydroxides, metal-organic frameworks, and metallic oxides, possess excellent loading capacity and a high surface area-to-mass ratio. This characteristic allows for the exposure [...] Read more.
The development of multifunctional biomimetic nanozymes with high catalytic activity and sensitive response is rapidly advancing. The hollow nanostructures, including metal hydroxides, metal-organic frameworks, and metallic oxides, possess excellent loading capacity and a high surface area-to-mass ratio. This characteristic allows for the exposure of more active sites and reaction channels, resulting in enhanced catalytic activity of nanozymes. In this work, based on the coordinating etching principle, a facile template-assisted strategy for synthesizing Fe(OH)3 nanocages by using Cu2O nanocubes as the precursors was proposed. The unique three-dimensional structure of Fe(OH)3 nanocages endows it with excellent catalytic activity. Herein, in the light of Fe(OH)3-induced biomimetic nanozyme catalyzed reactions, a self-tuning dual-mode fluorescence and colorimetric immunoassay was successfully constructed for ochratoxin A (OTA) detection. For the colorimetric signal, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) can be oxidized by Fe(OH)3 nanocages to form a color response that can be preliminarily identified by the human eye. For the fluorescence signal, the fluorescence intensity of 4-chloro-1-naphthol (4-CN) can be quantitatively quenched by the valence transition of Ferric ion in Fe(OH)3 nanocages. Due to the significant self-calibration, the performance of the self-tuning strategy for OTA detection was substantially enhanced. Under the optimized conditions, the developed dual-mode platform accomplishes a wide range of 1 ng/L to 5 μg/L with a detection limit of 0.68 ng/L (S/N = 3). This work not only develops a facile strategy for the synthesis of highly active peroxidase-like nanozyme but also achieves promising sensing platform for OTA detection in actual samples. Full article
Show Figures

Graphical abstract

11 pages, 3631 KiB  
Article
Development of an Immunoassay Method for the Sensitive Detection of Histamine and Tryptamine in Foods Based on a CuO@Au Nanoenzyme Label and Molecularly Imprinted Biomimetic Antibody
by Xinli Peng, Yongfeng Chen, Chunhui Gao, Yufeng Sun, Geoffrey I. N. Waterhouse and Zhixiang Xu
Polymers 2023, 15(1), 21; https://doi.org/10.3390/polym15010021 - 21 Dec 2022
Cited by 13 | Viewed by 2509
Abstract
In this paper, a novel biomimetic enzyme-linked immunoassay method (BELISA) was successfully established for the detection of histamine and tryptamine, based on catalytically active cupric oxide@gold nanoparticles (CuO@Au NPs) as a marker and a molecularly imprinted polymer (MIP) as the biomimetic antibody. Under [...] Read more.
In this paper, a novel biomimetic enzyme-linked immunoassay method (BELISA) was successfully established for the detection of histamine and tryptamine, based on catalytically active cupric oxide@gold nanoparticles (CuO@Au NPs) as a marker and a molecularly imprinted polymer (MIP) as the biomimetic antibody. Under optimized conditions, the detection limitations of the BELISA method for histamine and tryptamine were 0.04 mg L−1 and 0.14 mg L−1, respectively. For liquor spiked with histamine and tryptamine, the BELISA method delivered satisfactory recoveries ranging from 89.90% to 115.00%. Furthermore, the levels of histamine and tryptamine in fish, soy sauce, and rice vinegar samples were detected by the BELISA method and a high performance liquid chromatography method, with no significant difference between the two methods being found. Although the catalytic activity of nanozymes is still lower than that of natural enzymes, the BELISA method could still sensitively determine the histamine and tryptamine levels in food samples. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Preparation and Application)
Show Figures

Figure 1

10 pages, 982 KiB  
Communication
Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains
by Luka Predojević, Darja Keše, Darja Žgur Bertok, Miša Korva, Mateja Erdani Kreft and Marjanca Starčič Erjavec
Appl. Sci. 2022, 12(17), 8567; https://doi.org/10.3390/app12178567 - 26 Aug 2022
Cited by 1 | Viewed by 1833
Abstract
Escherichia coli is known to be an important uropathogenic agent. Several models were developed for investigating the uropathogensis of E. coli, including the recent biomimetic porcine urothelial in vitro model. The aim of this study was to assess the cytokine response of [...] Read more.
Escherichia coli is known to be an important uropathogenic agent. Several models were developed for investigating the uropathogensis of E. coli, including the recent biomimetic porcine urothelial in vitro model. The aim of this study was to assess the cytokine response of the cells of the biomimetic porcine urothelial model to different E. coli strains. The production of nine different cytokines in response to E. coli infection was evaluated using the commercial pre-configured immunoassay multiplex Cytokine & Chemokine 9-Plex Porcine ProcartaPlex™ Panel 1 kit. Our results showed that cells of the biomimetic porcine urothelial model reacted to the presence of all the employed different E. coli strains, albeit with some differences in levels and types of cytokines produced. Increased production of IL-10, IL-8, TNF-α, IL-1β, IL-4 and IL-12p40 was observed. Statistical analysis (Fisher’s exact test) revealed a correlation between the high fold change in the immune response and the presence of the cnf1 gene that encodes the cytotoxic necrotizing factor. Our results shed light on the cytokine response of normal urothelial cells to different E. coli strains and have the potential to fuel the search for understanding the mechanisms behind the different cytokine responses to different E. coli strains. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

15 pages, 1350 KiB  
Article
The Selectivity of Immunoassays and of Biomimetic Binding Assays with Imprinted Polymers
by Gergely Becskereki, George Horvai and Blanka Tóth
Int. J. Mol. Sci. 2021, 22(19), 10552; https://doi.org/10.3390/ijms221910552 - 29 Sep 2021
Cited by 2 | Viewed by 2459
Abstract
Molecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity. The selectivity of competitive [...] Read more.
Molecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity. The selectivity of competitive binding assays has been characterized with the cross-reactivity, which is usually expressed as the ratio of the measured IC50 concentration values of the interferent and the analyte, respectively. Yet this cross-reactivity is only a rough estimate of analytical selectivity. The relationship between cross-reactivity and analytical selectivity has apparently not been thoroughly investigated. The present work shows that this relationship depends on the underlying model of the competitive binding assay. For the simple but widely adopted model, where analyte and interferent compete for a single kind of binding site, we provide a simple formula for analytical selectivity. For reasons of an apparent mathematical problem, this formula had not been found before. We also show the relationship between analytical selectivity and cross-reactivity. Selectivity is also shown to depend on the directly measured quantity, e.g., the bound fraction of the tracer. For those cases where the one-site competitive model is not valid, a practical procedure is adopted to estimate the analytical selectivity. This procedure is then used to analyze the example of the competitive two-site binding model, which has been the main model for describing molecularly imprinted polymer behavior. The results of this work provide a solid foundation for assay development. Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials III)
Show Figures

Graphical abstract

16 pages, 2140 KiB  
Article
Selected Tetraspanins Functionalized Niosomes as Potential Standards for Exosome Immunoassays
by Pablo García-Manrique, Esther Serrano-Pertierra, Estefanía Lozano-Andrés, Soraya López-Martín, María Matos, Gemma Gutiérrez, María Yáñez-Mó and María Carmen Blanco-López
Nanomaterials 2020, 10(5), 971; https://doi.org/10.3390/nano10050971 - 18 May 2020
Cited by 8 | Viewed by 4211
Abstract
Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional [...] Read more.
Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination. Full article
(This article belongs to the Special Issue Multi-Functional Nanoparticles for Therapy and Diagnostics)
Show Figures

Graphical abstract

4 pages, 50 KiB  
Editorial
Special Issue on Organic Electronic Bio-Devices
by Luisa Torsi
Biosensors 2013, 3(1), 116-119; https://doi.org/10.3390/bios3010116 - 28 Feb 2013
Cited by 4 | Viewed by 6164
Abstract
The aim of the present editorial is to briefly summarize the current scientific and technological accomplishments in the field of organic electronic biosensors as described in the articles published in this Special Issue. By definition, a biosensor is a robust analytical device that [...] Read more.
The aim of the present editorial is to briefly summarize the current scientific and technological accomplishments in the field of organic electronic biosensors as described in the articles published in this Special Issue. By definition, a biosensor is a robust analytical device that combines a biological recognition element (e.g., antibodies, enzymes, cells) with a transducer. Organic electronic bio-devices are considered as potentially reliable substitutes of conventional and rather expensive analytical techniques employed for several applications such as medical diagnosis, food safety and environment pollution monitoring. Some insights into the selection and immobilization of recognition elements, signal amplification, fabrication techniques and analytical performance of biosensing devices will be presented. Full article
(This article belongs to the Special Issue Organic Electronic Bio-Devices)
30 pages, 1413 KiB  
Review
Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine
by Ziyad S. Haidar
Polymers 2010, 2(3), 323-352; https://doi.org/10.3390/polym2030323 - 20 Sep 2010
Cited by 65 | Viewed by 15672
Abstract
Modern breakthroughs in the fields of proteomics and DNA micro-arrays have widened the horizons of nanotechnology for applications with peptides and nucleic acids. Hence, biomimetic interest in the study and formulation of nanoscaled bio-structures, -materials, -devices and -therapeutic agent delivery vehicles has been [...] Read more.
Modern breakthroughs in the fields of proteomics and DNA micro-arrays have widened the horizons of nanotechnology for applications with peptides and nucleic acids. Hence, biomimetic interest in the study and formulation of nanoscaled bio-structures, -materials, -devices and -therapeutic agent delivery vehicles has been recently increasing. Many of the currently–investigated functionalized bio-nanosystems draw their inspiration from naturally-occurring phenomenon, prompting the integration of molecular signals and mimicking natural processes, at the cell, tissue and organ levels. Technologically, the ability to obtain spherical nanostructures exhibiting combinations of several properties that neither individual material possesses on its own renders colloidal core-shell architectured nanosystems particularly attractive. The three main developments presently foreseen in the nanomedicine sub-arena of nanobiotechnology are: sensorization (biosensors/ biodetection), diagnosis (biomarkers/bioimaging) and drug, protein or gene delivery (systemic vs. localized/targeted controlled–release systems). Advances in bio-applications such as cell-labelling/cell membrane modelling, agent delivery and targeting, tissue engineering, organ regeneration, nanoncology and immunoassay strategies, along the major limitations and potential future and advances are highlighted in this review. Herein, is an attempt to address some of the most recent works focusing on bio-inspired and -functional polymeric-based core-shell nanoparticulate systems aimed for agent delivery. It is founded, mostly, on specialized research and review articles that have emerged during the last ten years. Full article
(This article belongs to the Special Issue Bioinspired Polymers)
Show Figures

Graphical abstract

Back to TopTop