Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Biomimetic Model
2.2. Bacterial Strains
2.3. Infection Assay
2.4. Cytokine Detection Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Cytokine Response of Normal Urothelial Cells
3.2. Statistical Analysis of Correlation between Strain’s Cytokine Production Group and Virulence-Associated Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.W.; Lai, H.T.; Tsai, T.C.; Wu, Y.C.; Yang, Y.T.; Chen, K.Y.; Chen, C.M.; Li, Y.S.; Chen, C.N. Difference in the regulation of IL-8 expression induced by uropathogenic E. coli between two kinds of urinary tract epithelial cells. J. Biomed. Sci. 2009, 16, 91. [Google Scholar] [CrossRef] [PubMed]
- Schilling, J.D.; Mulvey, M.A.; Vincent, C.D.; Lorenz, R.G.; Hultgren, S.J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 2001, 166, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Sullivan, M.J.; Duell, B.L.; Goh, K.G.K.; Katupitiya, L.; Gosling, D.; Chamoun, M.N.; Kakkanat, A.; Chattopadhyay, D.; Crowley, M.; et al. Rapid bladder interleukin-10 synthesis in response to uropathogenic Escherichia coli is part of a defense strategy triggered by the major bacterial flagellar filament FliC and contingent on TLR5. mSphere 2019, 4, e00545-19. [Google Scholar] [CrossRef]
- Predojević, L.; Keše, D.; Žgur Bertok, D.; Železnik Ramuta, T.; Veranič, P.; Erdani Kreft, M.; Starčič Erjavec, M. A biomimetic porcine urothelial model for assessing Escherichia coli pathogenicity. Microorganisms 2022, 10, 783. [Google Scholar] [CrossRef]
- Višnjar, T.; Kocbek, P.; Kreft, M.E. Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem. Cell Biol. 2012, 137, 177–186. [Google Scholar] [CrossRef]
- Višnjar, T.; Kreft, M.E. The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem. Cell Biol. 2015, 143, 95–107. [Google Scholar] [CrossRef]
- Višnjar, T.; Jerman, U.D.; Veranič, P.; Kreft, M.E. Chitosan hydrochloride has no detrimental effect on bladder urothelial cancer cells. Toxicol. Vitr. 2017, 44, 403–413. [Google Scholar] [CrossRef]
- Resnik, N.; Erman, A.; Veranič, P.; Kreft, M.E. Triple labelling of actin filaments, intermediate filaments and microtubules for broad application in cell biology: Uncovering the cytoskeletal composition in tunneling nanotubes. Histochem. Cell Biol. 2019, 152, 311–317. [Google Scholar] [CrossRef]
- Tratnjek, L.; Romih, R.; Kreft, M.E. Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells. Histochem. Cell Biol. 2017, 148, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Lojk, J.; Bregar, V.B.; Strojan, K.; Hudoklin, S.; Veranič, P.; Pavlin, M.; Kreft, M.E. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem. Cell Biol. 2018, 149, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Ramuta, T.; Tratnjek, L.; Janev, A.; Seme, K.; Starčič Erjavec, M.; Kreft, M.E. The antibacterial activity of human amniotic membrane against multidrug-resistant bacteria associated with urinary tract infections: New insights from normal and cancerous urothelial models. Biomedicines 2021, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Mo, W.J.; Sebbel, P.; Min, G.; Neubert, T.A.; Glockshuber, R.; Wu, X.R.; Sun, T.T.; Kong, X.P. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: Evidence from in vitro FimH binding. J. Cell Sci. 2001, 114, 4095–4103. [Google Scholar] [CrossRef]
- Višnjar, T.; Chesi, G.; Iacobacci, S.; Polishchuk, E.; Resnik, N.; Robenek, H.; Kreft, M.; Romih, R.; Polishchuk, R.; Kreft, M.E. Uroplakin traffic through the Golgi apparatus induces its fragmentation: New insights from novel in vitro models. Sci. Rep. 2017, 7, 12842. [Google Scholar] [CrossRef]
- Rijavec, M.; Starčič Erjavec, M.; Ambrožič Avguštin, J.; Reissbrodt, R.; Fruth, A.; Križan-Hergouth, V.; Žgur-Bertok, D. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr. Microbiol. 2006, 53, 158–162. [Google Scholar] [CrossRef]
- Rijavec, M.; Müller-Premru, M.; Zakotnik, B.; Žgur-Bertok, D. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. J. Med. Microbiol. 2008, 57, 1329–1334. [Google Scholar] [CrossRef]
- Starčič Erjavec, M.; Jesenko, B.; Petkovšek, Ž.; Žgur-Bertok, D. Prevalence and associations of tcpC, a gene encoding a Toll/interleukin-1 receptor domain-containing protein, among Escherichia coli urinary tract infection, skin and soft tissue infection, and commensal isolates. J. Clin. Microbiol. 2010, 48, 966–968. [Google Scholar] [CrossRef]
- Hrovat, K.; Draganjec, N.; Starčič Erjavec, M. A tool for the Fisher’s exact test. In Proceedings of the Genetics, 4th Colloquium of Genetics, Piran, Slovenia, 19 September 2014. [Google Scholar]
- Starčič Erjavec, M.; Žgur-Bertok, D. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans--the Trojan horse within our gut. FEMS Microbiol. Lett. 2015, 362, fnu061. [Google Scholar] [CrossRef]
- Duell, B.L.; Carey, A.J.; Tan, C.K.; Cui, X.; Webb, R.I.; Totsika, M.; Schembri, M.A.; Derrington, P.; Irving-Rodgers, H.; Brooks, A.J.; et al. Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection. J. Immunol. 2012, 188, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Demirel, I.; Persson, A.; Brauner, A.; Särndahl, E.; Kruse, R.; Persson, K. Activation of the NLRP3 inflammasome pathway by uropathogenic Escherichia coli is virulence factor-dependent and influences colonization of bladder epithelial cells. Front. Cell. Infect. Microbiol. 2018, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- von Mutius, E.; Smits, H.H. Primary prevention of asthma: From risk and protective factors to targeted strategies for prevention. Lancet 2020, 396, 854–866. [Google Scholar] [CrossRef]
- Choi, P.; Reiser, H. IL-4: Role in disease and regulation of production. Clin. Exp. Immunol. 1998, 113, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, C.J.; Barlow, J.L.; McKenzie, A.N. Insights into the initiation of type 2 immune responses. Immunology 2011, 134, 378–385. [Google Scholar] [CrossRef]
- Svanborg, C.; Godaly, G.; Hedlund, M. Cytokine responses during mucosal infections: Role in disease pathogenesis and host defence. Curr. Opin. Microbiol. 1999, 2, 99–105. [Google Scholar] [CrossRef]
- Wullt, B.; Bergsten, G.; Connell, H.; Röllano, P.; Gebratsedik, N.; Hang, L.; Svanborg, C. P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell. Microbiol. 2001, 3, 255–264. [Google Scholar] [CrossRef]
- Hunstad, D.A.; Justice, S.S.; Hung, C.S.; Lauer, S.R.; Hultgren, S.J. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect. Immun. 2005, 73, 3999–4006. [Google Scholar] [CrossRef]
- Rao, W.H.; Evans, G.S.; Finn, A. The significance of interleukin 8 in urine. Arch. Dis. Child. 2001, 85, 256–262. [Google Scholar] [CrossRef]
- Hagberg, L.; Hull, R.; Hull, S.; McGhee, J.R.; Michalek, S.M.; Svanborg Edén, C. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 1984, 46, 839–844. [Google Scholar] [CrossRef]
- Spencer, J.D.; Schwaderer, A.L.; Becknell, B.; Watson, J.; Hains, D.S. The innate immune response during urinary tract infection and pyelonephritis. Pediatr. Nephrol. 2014, 29, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Sundac, L.; Dando, S.J.; Sullivan, M.J.; Derrington, P.; Gerrard, J.; Ulett, G.C. Protein-based profiling of the immune response to uropathogenic Escherichia coli in adult patients immediately following hospital admission for acute cystitis. Pathog. Dis. 2016, 74, ftw062. [Google Scholar] [CrossRef] [PubMed]
- Kuret, T.; Peskar, D.; Kreft, M.E.; Erman, A.; Veranič, P. Comprehensive transcriptome profiling of urothelial cells following TNFα stimulation in an in vitro interstitial cystitis/bladder pain syndrome model. Front. Immunol. 2022, 13, 960667. [Google Scholar] [CrossRef]
- Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The immunobiology of the interleukin-12 family: Room for discovery. Immunity 2019, 50, 851–870. [Google Scholar] [CrossRef]
- Murira, A.; Lamarre, A. Type-I interferon responses: From friend to foe in the battle against chronic viral infection. Front. Immunol. 2016, 7, 609. [Google Scholar] [CrossRef]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concept. 2018, 9, 64–79. [Google Scholar] [CrossRef]
- Drage, L.K.L.; Robson, W.; Mowbray, C.; Ali, A.; Perry, J.D.; Walton, K.E.; Harding, C.; Pickard, R.; Hall, J.; Aldridge, P.D. Elevated urine IL-10 concentrations associate with Escherichia coli persistence in older patients susceptible to recurrent urinary tract infections. Immun. Ageing 2019, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, A.; Falbo, V.; Ruggeri, F.M.; Baldassarri, L.; Bisicchia, R.; Ippolito, G.; Romoli, E.; Donelli, G. Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J. Clin. Microbiol. 1987, 25, 146–149. [Google Scholar] [CrossRef]
- Rippere-Lampe, K.E.; O’Brien, A.D.; Conran, R.; Lockman, H.A. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 2001, 69, 3954–3964. [Google Scholar] [CrossRef]
- Andreu, A.; Stapleton, A.E.; Fennell, C.; Lockman, H.A.; Xercavins, M.; Fernandez, F.; Stamm, W.E. Urovirulence determinants in Escherichia coli strains causing prostatitis. J. Infect. Dis. 1997, 176, 464–469. [Google Scholar] [CrossRef]
- Rappuoli, R. Pushing the limits of cellular microbiology: Microarrays to study bacteria-host cell intimate contacts. Proc. Natl. Acad. Sci. USA 2000, 97, 13467–13469. [Google Scholar] [CrossRef] [Green Version]
- Knaus, U.G. Rho GTPase signaling in inflammation and transformation. Immunol. Res. 2000, 21, 103–109. [Google Scholar] [CrossRef]
- Falzano, L.; Quaranta, M.G.; Travaglione, S.; Filippini, P.; Fabbri, A.; Viora, M.; Donelli, G.; Fiorentini, C. Cytotoxic necrotizing factor 1 enhances reactive oxygen species-dependent transcription and secretion of proinflammatory cytokines in human uroepithelial cells. Infect. Immun. 2003, 71, 4178–4181. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Zhang, J.; Fischer, H.; Huang, W.; Lutay, N.; Cirl, C.; Lum, J.; Miethke, T.; Svanborg, C. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog. 2010, 6, e1001120. [Google Scholar] [CrossRef] [PubMed]
- Wiles, T.J.; Mulvey, M.A. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: Progress and perspectives. Futur. Microbiol. 2013, 8, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, P.; Laestadius, A.; Jahnukainen, T.; Söderblom, T.; Bäckhed, F.; Celsi, G.; Brismar, H.; Normark, S.; Aperia, A.; Richter-Dahlfors, A. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 2000, 405, 694–697. [Google Scholar] [CrossRef]
Designation | Type of E. coli Strain | Reference/Source |
---|---|---|
J96 | Uropathogenic strain | Eva Moreno |
536 | Uropathogenic strain | Eva Moreno |
SE15 | Commensal fecal strain | Eric Oswald |
MG1655 | Laboratory K-12 strain | Christophe Beloin |
DL1, DL18, DL31, DL53, DL75, DL80, DL87, DL95, DL102 | Isolated from urine of patients with UTI | [16] |
HS16 | Isolated from urine and blood of a patient with UTI | [17] |
BJ16, BJ23, BJ30, BJ45, BJ50, BJ51, BJ65, BJ69, BJ95, BJ97 | Fecal strains from healthy volunteers | [18] |
Cytokine | Average Concentration (pg/mL) | ANOVA | |
---|---|---|---|
UPEC a | Commensal E. coli b | p-Value | |
IL-10 | 32.97 ± 15.16 | 23.14 ± 15.12 | 0.14 |
IL-1β | 3.09 ± 1.93 | 2.50 ± 1.41 | 0.46 |
IL-4 | 4.02 ± 2.49 | 2.75 ± 2.47 | 0.21 |
IL-6 | 4.25 ± 0.85 | 4.17 ± 0.57 | 0.79 |
IL-8 | 696.88 ± 350.29 | 736.12 ± 228.77 | 0.29 |
TNF-α | 46.21 ± 24.27 | 37.84 ± 22.26 | 0.36 |
IL-12p40 | 65.25 ± 34.21 | 44.90 ± 25.53 | 0.12 |
Total Cytokine Production Group | |||||||
---|---|---|---|---|---|---|---|
Low Fold Change Group I | Moderate Fold Change Group II | High Fold Change Group III | |||||
(no. (%)) | (no. (%)) | (no. (%)) | |||||
Virulence-associated gene (no. (%)) | Group I (12 (50)) | Non-Group I a (12 (50)) | Group II (7 (29)) | Non-Group II b (17 (71)) | Group III (5 (21)) | Non-Group III c (19 (79)) | |
Toxins | |||||||
cnf1 | (7 (29)) | 1 (8) | 6 (50) | 2 (29) | 5 (29) | 4 (80) * | 3 (16) |
hlyA | (9 (38)) | 2 (17) | 7 (58) | 3 (43) | 6 (35) | 4 (80) | 5 (26) |
usp | (18 (75)) | 9 (75) | 9 (75) | 5 (71) | 13 (76) | 4 (80) | 14 (74) |
clbAQ | (12 (50)) | 4 (33) | 8 (67) | 4 (57) | 8 (47) | 4 (80) | 8 (42) |
vat | (14 (58)) | 6 (50) | 8 (67) | 4 (57) | 10 (59) | 4 (80) | 10 (53) |
Adhesins | |||||||
fimH | (23 (96)) | 12 (100) | 11 (92) | 6 (86) | 17 (100) | 5 (100) | 18 (95) |
papGII | (5 (21)) | 3 (25) | 2(17) | 1 (14) | 4 (24) | 1 (20) | 4 (21) |
papGIII | (7 (29)) | 2 (17) | 5 (42) | 2 (29) | 5 (29) | 3 (60) | 4 (21) |
afa/draBC | (0 (0)) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
sfaDE | (11 (46)) | 4 (33) | 7 (58) | 3 (43) | 8 (47) | 4 (80) | 7 (37) |
iha | (4 (17)) | 1 (8) | 3 (25) | 2 (29) | 2 (12) | 1 (20) | 3 (16) |
yfcV | (17 (71)) | 8 (67) | 9 (75) | 5 (71) | 12 (71) | 4 (80) | 13 (68) |
Iron acquisition systems | |||||||
fyuA | (17 (71)) | 8 (67) | 9 (75) | 5 (71) | 12 (71) | 4 (80) | 13 (68) |
hbp | (2 (8)) | 1 (8) | 1 (8) | 1 (14) | 1 (6) | 0 (0) | 2 (11) |
ireA | (6 (25)) | 4 (33) | 2 (17) | 1 (14) | 5 (29) | 1 (20) | 5 (26) |
picU | (3 (13)) | 0 (0) | 3 (25) | 1 (14) | 2 (12) | 2 (40) | 1 (5) |
iucD | (9 (38)) | 5 (42) | 4 (33) | 3 (43) | 6 (35) | 1 (20) | 8 (42) |
iroN | (16 (67)) | 7 (58) | 9 (75) | 5 (71) | 11 (65) | 4 (80) | 12 (63) |
Protectins | |||||||
kpsMTII | (14 (58)) | 6 (50) | 8 (67) | 5 (71) | 9 (53) | 3 (60) | 11 (58) |
ompT | (19 (79)) | 9 (75) | 10 (83) | 6 (86) | 13 (76) | 4 (80) | 15 (79) |
ompT-APEC | (7 (29)) | 5 (42) | 2 (17) | 2 (29) | 5 (29) | 0 (0) | 7 (37) |
tcpC | (9 (38)) | 3 (25) | 6 (50) | 2 (29) | 7 (41) | 4 (80) | 5 (26) |
traT | (11 (46)) | 7 (58) | 4 (33) | 3 (43) | 8 (47) | 1 (20) | 10 (53) |
iss | (5 (21)) | 4 (33) | 1 (8) | 1 (14) | 4 (24) | 0 (0) | 5 (26) |
neuB | (8 (33)) | 4 (33) | 4 (33) | 3 (43) | 5 (29) | 1 (20) | 7 (37) |
Invasins | |||||||
ibeA | (3 (13)) | 1 (8) | 2 (17) | 1 (14) | 2 (12) | 1 (20) | 2 (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predojević, L.; Keše, D.; Žgur Bertok, D.; Korva, M.; Erdani Kreft, M.; Starčič Erjavec, M. Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains. Appl. Sci. 2022, 12, 8567. https://doi.org/10.3390/app12178567
Predojević L, Keše D, Žgur Bertok D, Korva M, Erdani Kreft M, Starčič Erjavec M. Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains. Applied Sciences. 2022; 12(17):8567. https://doi.org/10.3390/app12178567
Chicago/Turabian StylePredojević, Luka, Darja Keše, Darja Žgur Bertok, Miša Korva, Mateja Erdani Kreft, and Marjanca Starčič Erjavec. 2022. "Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains" Applied Sciences 12, no. 17: 8567. https://doi.org/10.3390/app12178567
APA StylePredojević, L., Keše, D., Žgur Bertok, D., Korva, M., Erdani Kreft, M., & Starčič Erjavec, M. (2022). Cytokine Response of the Biomimetic Porcine Urothelial Model to Different Escherichia coli Strains. Applied Sciences, 12(17), 8567. https://doi.org/10.3390/app12178567