Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = biological ex situ methanation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3810 KiB  
Article
Continuous Biological Ex Situ Methanation of CO2 and H2 in a Novel Inverse Membrane Reactor (IMR)
by Fabian Haitz, Oliver Jochum, Agnieszka Lasota, André Friedrich, Markus Bieri, Marc Stalder, Martin Schaub, Ulrich Hochberg and Christiane Zell
Processes 2024, 12(10), 2305; https://doi.org/10.3390/pr12102305 - 21 Oct 2024
Cited by 1 | Viewed by 2142
Abstract
A promising approach for carbon dioxide (CO2) valorization and storing excess electricity is the biological methanation of hydrogen and carbon dioxide to methane. The primary challenge here is to supply sufficient quantities of dissolved hydrogen. The newly developed Inverse Membrane Reactor [...] Read more.
A promising approach for carbon dioxide (CO2) valorization and storing excess electricity is the biological methanation of hydrogen and carbon dioxide to methane. The primary challenge here is to supply sufficient quantities of dissolved hydrogen. The newly developed Inverse Membrane Reactor (IMR) allows for the spatial separation of the required reactant gases, hydrogen (H2) and carbon dioxide (CO2), and the degassing area for methane (CH4) output through commercially available ultrafiltration membranes, enabling a reactor design as a closed circuit for continuous methane production. In addition, the Inverse Membrane Reactor (IMR) facilitates the utilization of hydraulic pressure to enhance hydrogen (H2) input. One of the process’s advantages is the potential to utilize both carbon dioxide (CO2) from conventional biogas and CO2-rich industrial waste gas streams. An outstanding result from investigating the IMR revealed that, employing the membrane gassing concept, methane concentrations of over 90 vol.% could be consistently achieved through flexible gas input over a one-year test series. Following startup, only three supplemental nutrient additions were required in addition to hydrogen (H2) and carbon dioxide (CO2), which served as energy and carbon sources, respectively. The maximum achieved methane formation rate specific to membrane area was 87.7 LN of methane per m2 of membrane area per day at a product gas composition of 94 vol.% methane, 2 vol.% H2, and 4 vol.% CO2. Full article
Show Figures

Figure 1

15 pages, 2898 KiB  
Article
Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis
by Maximilian Peter Mock, Rayen Ochi, Maria Bieringer, Tim Bieringer, Raimund Brotsack and Stephan Leyer
Microorganisms 2023, 11(10), 2533; https://doi.org/10.3390/microorganisms11102533 - 10 Oct 2023
Cited by 2 | Viewed by 2601
Abstract
Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium [...] Read more.
Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes. Full article
(This article belongs to the Special Issue Microorganisms in Biomass Conversion and Biofuel Production)
Show Figures

Figure 1

20 pages, 4383 KiB  
Article
Biological Methanation in an Anaerobic Biofilm Reactor—Trace Element and Mineral Requirements for Stable Operation
by Joseph Tauber, Daniel Möstl, Julia Vierheilig, Ernis Saracevic, Karl Svardal and Jörg Krampe
Processes 2023, 11(4), 1013; https://doi.org/10.3390/pr11041013 - 27 Mar 2023
Cited by 7 | Viewed by 3763
Abstract
Biological methanation of carbon dioxide using hydrogen makes it possible to improve the methane and energy content of biogas produced from sewage sludge and organic residuals and to reach the requirements for injection into the natural gas network. Biofilm reactors, so-called trickling bed [...] Read more.
Biological methanation of carbon dioxide using hydrogen makes it possible to improve the methane and energy content of biogas produced from sewage sludge and organic residuals and to reach the requirements for injection into the natural gas network. Biofilm reactors, so-called trickling bed reactors, offer a relatively simple, energy-efficient, and reliable technique for upgrading biogas via ex-situ methanation. A mesophilic lab-scale biofilm reactor was operated continuously for nine months to upgrade biogas from anaerobic sewage sludge digestion to a methane content >98%. To supply essential trace elements to the biomass, a stock solution was fed to the trickling liquid. Besides standard parameters and gas quality, concentrations of Na, K, Ca, Mg, Ni, and Fe were measured in the liquid and the biofilm using ICP-OES (inductively coupled plasma optical emission spectrometry) to examine the biofilms load-dependent uptake rate and to calculate quantities required for a stable operation. Additionally, microbial community dynamics were monitored by amplicon sequencing (16S rRNA gene). It was found that all investigated (trace) elements are taken up by the biomass. Some are absorbed depending on the load, others independently of it. For example, a biomass-specific uptake of 0.13 mg·g−1·d−1 for Ni and up to 50 mg·g−1·d−1 for Mg were measured. Full article
(This article belongs to the Special Issue New Trends and Perspectives on Anaerobic Digestion)
Show Figures

Figure 1

34 pages, 2432 KiB  
Review
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2
by Ruggero Bellini, Ilaria Bassani, Arianna Vizzarro, Annalisa Abdel Azim, Nicolò Santi Vasile, Candido Fabrizio Pirri, Francesca Verga and Barbara Menin
Energies 2022, 15(11), 4064; https://doi.org/10.3390/en15114064 - 1 Jun 2022
Cited by 34 | Viewed by 5929
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a [...] Read more.
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste)
Show Figures

Figure 1

16 pages, 981 KiB  
Article
Temperature and Inoculum Origin Influence the Performance of Ex-Situ Biological Hydrogen Methanation
by Noémie Figeac, Eric Trably, Nicolas Bernet, Jean-Philippe Delgenès and Renaud Escudié
Molecules 2020, 25(23), 5665; https://doi.org/10.3390/molecules25235665 - 1 Dec 2020
Cited by 29 | Viewed by 3159
Abstract
The conversion of H2 into methane can be carried out by microorganisms in a process so-called biomethanation. In ex-situ biomethanation H2 and CO2 gas are exogenous to the system. One of the main limitations of the biomethanation process is the [...] Read more.
The conversion of H2 into methane can be carried out by microorganisms in a process so-called biomethanation. In ex-situ biomethanation H2 and CO2 gas are exogenous to the system. One of the main limitations of the biomethanation process is the low gas-liquid transfer rate and solubility of H2 which are strongly influenced by the temperature. Hydrogenotrophic methanogens that are responsible for the biomethanation reaction are also very sensitive to temperature variations. The aim of this work was to evaluate the impact of temperature on batch biomethanation process in mixed culture. The performances of mesophilic and thermophilic inocula were assessed at 4 temperatures (24, 35, 55 and 65 °C). A negative impact of the low temperature (24 °C) was observed on microbial kinetics. Although methane production rate was higher at 55 and 65 °C (respectively 290 ± 55 and 309 ± 109 mL CH4/L.day for the mesophilic inoculum) than at 24 and 35 °C (respectively 156 ± 41 and 253 ± 51 mL CH4/L.day), the instability of the system substantially increased, likely because of a strong dominance of only Methanothermobacter species. Considering the maximal methane production rates and their stability all along the experiments, an optimal temperature range of 35 °C or 55 °C is recommended to operate ex-situ biomethanation process. Full article
Show Figures

Graphical abstract

Back to TopTop