Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = biodefoamer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1114 KiB  
Communication
Modeling of Biofoam Destabilization by Biodefoamers in Poultry Slaughterhouse Wastewater Treatment Activated Sludge
by Cynthia Dlangamandla, Ncumisa Mpongwana, Seteno K. O. Ntwampe, Moses Basitere and Boredi S. Chidi
Water 2024, 16(9), 1293; https://doi.org/10.3390/w16091293 - 1 May 2024
Viewed by 1887
Abstract
Biofoam formation in wastewater treatment is a challenge globally. Previously, we successfully proposed the use of biodefoamers instead of synthetic defoamers for environmental protection. In this study, we report on biodefoamation modeling using activated sludge organisms. Overall, the rate law model was determined [...] Read more.
Biofoam formation in wastewater treatment is a challenge globally. Previously, we successfully proposed the use of biodefoamers instead of synthetic defoamers for environmental protection. In this study, we report on biodefoamation modeling using activated sludge organisms. Overall, the rate law model was determined to adequately describe foam drainage including collapse while applying biodefoamers. The target industry is the poultry processing industry whereby foam formation during wastewater treatment is an ongoing challenge. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 1799 KiB  
Article
Biodefoamer-Supported Activated Sludge System for the Treatment of Poultry Slaughterhouse Wastewater
by Cynthia Dlangamandla, Seteno K. O. Ntwampe, Moses Basitere, Boredi S. Chidi and Benjamin I. Okeleye
Appl. Sci. 2023, 13(16), 9225; https://doi.org/10.3390/app13169225 - 14 Aug 2023
Cited by 1 | Viewed by 1655
Abstract
Poultry slaughterhouse wastewater (PSW) is laden with fats, oil, and grease (FOG), as well as proteins. As such, PSW promotes the proliferation of filamentous organisms, which cause foam formation. In this study, the production of biological defoamers (biodefoamers) uses a consortium with antagonistic [...] Read more.
Poultry slaughterhouse wastewater (PSW) is laden with fats, oil, and grease (FOG), as well as proteins. As such, PSW promotes the proliferation of filamentous organisms, which cause foam formation. In this study, the production of biological defoamers (biodefoamers) uses a consortium with antagonistic properties, i.e., 1.39 L of wastewater/mL defoamers, as reported in our previous study, toward foam formers and their application in the treatment of PSW using a bench-scale activated sludge (AS)-supported treatment system consisting of an aeration and clarification tank. The foam produced was slimy, brown, and thick, suggesting the presence of Nocardia, Microthrix, and Type 1863 species in the PSW/AS wastewater treatment system. The bio (Bio-AS) and synthetic-defoamers (Syn-AS, positive control) supplementation, i.e., at 4% v/v in the PSW/AS primary treatment stage (aeration tank) operated over ten days, resulted in 94% and 98% FOG and protein removal for the biodefoamers, respectively, when compared to 50% and 92% for a synthetic defoamer, respectively. Similarly, the Bio-AS treatment achieved 85.4% COD removal, while a lowly 51% was observed for the Syn-AS PSW treatment regime. Overall, the biodefoamers performed vehemently compared to synthetic defoamers, improving the PSW/AS system’s performance. It was prudent to hypothesize that the biodefoamers might have had FOG solubilization attributes, an assertion that needs further research in future studies. It was concluded that Bio-AS was more efficient in the removal of FOG, proteins, TSS, and COD in comparison to Syn-AS and negative control without supplementation (CAS). Full article
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
Production, Application, and Efficacy of Biodefoamers from Bacillus, Aeromonas, Klebsiella, Comamonas spp. Consortium for the Defoamation of Poultry Slaughterhouse Wastewater
by Cynthia Dlangamandla, Seteno K. O. Ntwampe, Moses Basitere, Boredi S. Chidi, Benjamin I. Okeleye and Melody R. Mukandi
Water 2023, 15(4), 655; https://doi.org/10.3390/w15040655 - 8 Feb 2023
Cited by 4 | Viewed by 2583
Abstract
Activated sludge (AS) treatment systems’ major limitation is the nuisance foaming at the surface of the aeration basin in wastewater treatment plants (WWTPs). This foam can be stabilized by biofoamers and surfactants in the wastewater to be treated. In order to control foam, [...] Read more.
Activated sludge (AS) treatment systems’ major limitation is the nuisance foaming at the surface of the aeration basin in wastewater treatment plants (WWTPs). This foam can be stabilized by biofoamers and surfactants in the wastewater to be treated. In order to control foam, synthetic defoamers are used; however, these defoamers are toxic to the environment. This study aimed to optimize the production of biodefoamers by quantifying foam reduction efficiency and foam collapse by the isolate pervasive to poultry slaughterhouse wastewater (PSW). Before their identification and characterization, nine bacterial isolates were isolated and assessed for foam reduction efficiency. These organisms produced minute biodefoamers under various conditions generated on the response surface methodology (RSM). The isolates that produced biodefoamers with high foam reduction efficiency and at a lower foam collapse rate were Bacillus, Aeromonas, Klebsiella, and Commamonas spp. consortia. At 4% (v defoamer/v PSW), the crude defoamers produced by the consortium had 96% foam reduction efficiency at 1.7 mm/s foam collapse rate, which was comparable to 96% foam reduction efficiency and 2.5 mm/s foam collapse rate for active silicone polymer antifoam A/defoamer by Sigma-Aldrich, a synthetic defoamer. At 2.5 mm/s, all of which were achieved at pH 7 and in less than 50 s. The application of the biodefoamer resulted in sludge compacted flocs, with filament protruding flocs observed when a synthetic defoamer was used. The biodefoamer showed the presence of alkane, amine, carboxyl and hydroxyl groups, which indicated a polysaccharide core structure. The 1H NMR analysis further confirmed that the biodefoamers were carbohydrate polymers. This study reports for the first time on the efficiency and comparability of a biodefoamer to a synthetic defoamer. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop