Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bioID/APEX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11223 KB  
Review
Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface
by Saman Rahmati and Andrew Emili
Cancers 2025, 17(2), 179; https://doi.org/10.3390/cancers17020179 - 8 Jan 2025
Cited by 1 | Viewed by 6502
Abstract
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo [...] Read more.
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification–mass spectrometry often fail to detect key but weak or transient receptor–protein interactions. Proximity labeling, a cutting-edge proteomics technology, addresses these technical challenges by enabling precise mapping of protein neighborhoods around a receptor target on the cell surface of cancer cells. This technique has been successfully applied in vitro and in vivo for proteomic mapping across various model systems. This review explores the fundamental principles, technologies, advantages, limitations, and applications of proximity labeling in cancer biology, focusing on mapping receptor microenvironments. By advancing mechanistic insights into cancer cell receptor signaling mechanisms, proximity labeling is poised to transform cancer research, improve targeted therapies, and illuminate avenues to overcome drug resistance. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based “Omics” Approaches in Cancer Research)
Show Figures

Figure 1

29 pages, 2143 KB  
Review
Proteomics Applications in Toxoplasma gondii: Unveiling the Host–Parasite Interactions and Therapeutic Target Discovery
by Bin Deng, Laura Vanagas, Andres M. Alonso and Sergio O. Angel
Pathogens 2024, 13(1), 33; https://doi.org/10.3390/pathogens13010033 - 29 Dec 2023
Cited by 6 | Viewed by 4042
Abstract
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A [...] Read more.
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host–parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets. Full article
(This article belongs to the Special Issue Research on Coccidian Parasites in Livestock)
Show Figures

Figure 1

5 pages, 515 KB  
Perspective
CRISPR-Guided Proximity Labeling of RNA–Protein Interactions
by Mingxing Lu, Zuowei Wang, Yixiu Wang and Bingbing Ren
Genes 2022, 13(9), 1549; https://doi.org/10.3390/genes13091549 - 27 Aug 2022
Cited by 1 | Viewed by 5052
Abstract
Proximity labeling employs modified biotin ligases or peroxidases that produce reactive radicals to covalently label proximate proteins with biotin in living cells. The resulting biotinylated proteins can then be isolated and identified. A combination of programmable DNA targeting and proximity labeling that maps [...] Read more.
Proximity labeling employs modified biotin ligases or peroxidases that produce reactive radicals to covalently label proximate proteins with biotin in living cells. The resulting biotinylated proteins can then be isolated and identified. A combination of programmable DNA targeting and proximity labeling that maps proteomic landscape at DNA elements with dCas9-APEX2 has been established in living cells. However, defining interactome at RNA elements has lagged behind. In combination with RNA-targeting CRISPR-Cas13, proximity labeling can also be used to identify proteins that interact with specific RNA elements in living cells. From this viewpoint, we briefly summarize the latest advances in CRISPR-guided proximity labeling in studying RNA–protein interactions, and we propose applying the most recent engineered proximity-labeling enzymes to study RNA-centric interactions in the future. Full article
(This article belongs to the Special Issue RNA Chemical Biology)
Show Figures

Figure 1

27 pages, 2754 KB  
Review
A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex
by Melis Dilara Arslanhan, Dila Gulensoy and Elif Nur Firat-Karalar
Cells 2020, 9(6), 1390; https://doi.org/10.3390/cells9061390 - 3 Jun 2020
Cited by 22 | Viewed by 8917
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated [...] Read more.
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

15 pages, 592 KB  
Review
Tissue Specific Labeling in Proteomics
by Evelyn Ramberger and Gunnar Dittmar
Proteomes 2017, 5(3), 17; https://doi.org/10.3390/proteomes5030017 - 18 Jul 2017
Cited by 8 | Viewed by 8348
Abstract
Mass spectrometry-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples. While it is routinely used for the characterization of simple cell line systems, the analysis of the cell specific proteome in multicellular organisms and tissues poses a significant [...] Read more.
Mass spectrometry-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples. While it is routinely used for the characterization of simple cell line systems, the analysis of the cell specific proteome in multicellular organisms and tissues poses a significant challenge. Isolating a subset of cells from tissues requires mechanical and biochemical separation or sorting, a process which can alter cellular signaling, and thus, the composition of the proteome. Recently, several approaches for cell selective labeling of proteins, that include bioorthogonal amino acids, biotinylating enzymes, and genetic tools, have been developed. These tools facilitate the selective labeling of proteins, their interactome, or of specific cell types within a tissue or an organism, while avoiding the difficult and contamination-prone biochemical separation of cells from the tissue. In this review, we give an overview of existing techniques and their application in cell culture models and whole animals. Full article
Show Figures

Figure 1

Back to TopTop