Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = bio-photosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3173 KB  
Review
Advances on Sensors Based on Carbon Nanotubes
by Luca Camilli and Maurizio Passacantando
Chemosensors 2018, 6(4), 62; https://doi.org/10.3390/chemosensors6040062 - 6 Dec 2018
Cited by 147 | Viewed by 11297
Abstract
Carbon nanotubes have been attracting considerable interest among material scientists, physicists, chemists, and engineers for almost 30 years. Owing to their high aspect ratio, coupled with remarkable mechanical, electronic, and thermal properties, carbon nanotubes have found application in diverse fields. In this review, [...] Read more.
Carbon nanotubes have been attracting considerable interest among material scientists, physicists, chemists, and engineers for almost 30 years. Owing to their high aspect ratio, coupled with remarkable mechanical, electronic, and thermal properties, carbon nanotubes have found application in diverse fields. In this review, we will cover the work on carbon nanotubes used for sensing applications. In particular, we will see examples where carbon nanotubes act as main players in devices sensing biomolecules, gas, light or pressure changes. Furthermore, we will discuss how to improve the performance of carbon nanotube-based sensors after proper modification. Full article
(This article belongs to the Special Issue Carbon Nanotube Sensors)
Show Figures

Figure 1

7 pages, 1387 KB  
Article
Electrochemical Field-Effect Transistor Utilization to Study the Coupling Success Rate of Photosynthetic Protein Complexes to Cytochrome c
by Arash Takshi, Houman Yaghoubi, Jing Wang, Daniel Jun and J. Thomas Beatty
Biosensors 2017, 7(2), 16; https://doi.org/10.3390/bios7020016 - 30 Mar 2017
Cited by 8 | Viewed by 7280
Abstract
Due to the high internal quantum efficiency, reaction center (RC) proteins from photosynthetic organisms have been studied in various bio-photoelectrochemical devices for solar energy harvesting. In vivo, RC and cytochrome c (cyt c; a component of the biological electron transport chain) can [...] Read more.
Due to the high internal quantum efficiency, reaction center (RC) proteins from photosynthetic organisms have been studied in various bio-photoelectrochemical devices for solar energy harvesting. In vivo, RC and cytochrome c (cyt c; a component of the biological electron transport chain) can form a cocomplex via interprotein docking. This mechanism can be used in vitro for efficient electron transfer from an electrode to the RC in a bio-photoelectrochemical device. Hence, the success rate in coupling RCs to cyt c is of great importance for practical applications in the future. In this work, we use an electrochemical transistor to study the binding of the RC to cytochrome. The shift in the transistor threshold voltage was measured in the dark and under illumination to estimate the density of cytochrome and coupled RCs on the gate of the transistor. The results show that ~33% of the cyt cs on the transistor gate were able to effectively couple with RCs. Due to the high sensitivity of the transistor, the approach can be used to make photosensors for detecting low light intensities. Full article
(This article belongs to the Special Issue Biophotonic Sensors and Applications)
Show Figures

Graphical abstract

25 pages, 1002 KB  
Review
From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World
by Aba Losi, Carmen Mandalari and Wolfgang Gärtner
Plants 2014, 3(1), 70-94; https://doi.org/10.3390/plants3010070 - 27 Jan 2014
Cited by 23 | Viewed by 9096
Abstract
Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage) and BLUF (Blue Light sensing Using Flavins) superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we [...] Read more.
Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage) and BLUF (Blue Light sensing Using Flavins) superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we review their biological roles in the prokaryotic world and their evolution pathways. An unexpected large number of bacterial species possess flavin-based photosensors, amongst which are important human and plant pathogens. Still, few cases are reported where the activity of blue-light sensors could be correlated to infectivity and/or has been shown to be involved in the activation of specific genes, resulting in selective growth patterns. Metagenomics and bio-informatic analysis have only recently been initiated, but signatures are beginning to emerge that allow definition of a bona fide LOV or BLUF domain, aiming at better selection criteria for novel blue-light sensors. We also present here, for the first time, the phylogenetic tree for archaeal LOV domains that have reached a statistically significant number but have not at all been investigated thus far. Full article
(This article belongs to the Special Issue Plant Light Signalling)
Show Figures

Figure 1

Back to TopTop