Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = bio-inspired maneuvering performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1670 KiB  
Article
Bio-Inspired Observability Enhancement Method for UAV Target Localization and Sensor Bias Estimation with Bearing-Only Measurement
by Qianshuai Wang, Zeyuan Li, Jicheng Peng and Kelin Lu
Biomimetics 2025, 10(5), 336; https://doi.org/10.3390/biomimetics10050336 - 20 May 2025
Viewed by 405
Abstract
This paper addresses the problem of observability analysis and enhancement for UAV target localization and sensor bias estimation with bearing-only measurement. Inspired by the compound eye vision, a bio-inspired observability analysis method is proposed for stochastic systems. Furthermore, a performance metric that can [...] Read more.
This paper addresses the problem of observability analysis and enhancement for UAV target localization and sensor bias estimation with bearing-only measurement. Inspired by the compound eye vision, a bio-inspired observability analysis method is proposed for stochastic systems. Furthermore, a performance metric that can be utilized in UAV trajectory optimization for observability enhancement of the target localization system is formulated based on maximum mean discrepancy. The performance metric and the distance of the UAV relative to the target are utilized as objective functions for trajectory optimization. To determine the decision variables (the UAV’s velocity and turn rate) for UAV maneuver decision making, a multi-objective optimization framework is constructed, and is subsequently solved via the nonlinear constrained multi-objective whale optimization algorithm. Finally, the analytical results are validated through numerical simulations and comparative analyses. The proposed method demonstrates superior convergence in both target localization and sensor bias estimation. The nonlinear constrained multi-objective whale optimization algorithm achieves minimal values for both generational distance and inverted generational distance, demonstrating superior convergence and diversity characteristics. Full article
Show Figures

Figure 1

24 pages, 14347 KiB  
Article
Using Reinforcement Learning to Develop a Novel Gait for a Bio-Robotic California Sea Lion
by Anthony Drago, Shraman Kadapa, Nicholas Marcouiller, Harry G. Kwatny and James L. Tangorra
Biomimetics 2024, 9(9), 522; https://doi.org/10.3390/biomimetics9090522 - 30 Aug 2024
Cited by 3 | Viewed by 1891
Abstract
While researchers have made notable progress in bio-inspired swimming robot development, a persistent challenge lies in creating propulsive gaits tailored to these robotic systems. The California sea lion achieves its robust swimming abilities through a careful coordination of foreflippers and body segments. In [...] Read more.
While researchers have made notable progress in bio-inspired swimming robot development, a persistent challenge lies in creating propulsive gaits tailored to these robotic systems. The California sea lion achieves its robust swimming abilities through a careful coordination of foreflippers and body segments. In this paper, reinforcement learning (RL) was used to develop a novel sea lion foreflipper gait for a bio-robotic swimmer using a numerically modelled computational representation of the robot. This model integration enabled reinforcement learning to develop desired swimming gaits in the challenging underwater domain. The novel RL gait outperformed the characteristic sea lion foreflipper gait in the simulated underwater domain. When applied to the real-world robot, the RL constructed novel gait performed as well as or better than the characteristic sea lion gait in many factors. This work shows the potential for using complimentary bio-robotic and numerical models with reinforcement learning to enable the development of effective gaits and maneuvers for underwater swimming vehicles. Full article
(This article belongs to the Special Issue Research in Biomimetic Underwater Devices)
Show Figures

Figure 1

25 pages, 30065 KiB  
Article
Bio-Inspired Intelligent Swarm Confrontation Algorithm for a Complex Urban Scenario
by He Cai, Yaoguo Luo, Huanli Gao and Guangbin Wang
Electronics 2024, 13(10), 1848; https://doi.org/10.3390/electronics13101848 - 9 May 2024
Viewed by 1751
Abstract
This paper considers the confrontation problem for two tank swarms of equal size and capability in a complex urban scenario. Based on the Unity platform (2022.3.20f1c1), the confrontation scenario is constructed featuring multiple crossing roads. Through the analysis of a substantial amount of [...] Read more.
This paper considers the confrontation problem for two tank swarms of equal size and capability in a complex urban scenario. Based on the Unity platform (2022.3.20f1c1), the confrontation scenario is constructed featuring multiple crossing roads. Through the analysis of a substantial amount of biological data and wildlife videos regarding animal behavioral strategies during confrontations for hunting or food competition, two strategies are been utilized to design a novel bio-inspired intelligent swarm confrontation algorithm. The first one is the “fire concentration” strategy, which assigns a target for each tank in a way that the isolated opponent will be preferentially attacked with concentrated firepower. The second one is the “back and forth maneuver” strategy, which makes the tank tactically retreat after firing in order to avoid being hit when the shell is reloading. Two state-of-the-art swarm confrontation algorithms, namely the reinforcement learning algorithm and the assign nearest algorithm, are chosen as the opponents for the bio-inspired swarm confrontation algorithm proposed in this paper. Data of comprehensive confrontation tests show that the bio-inspired swarm confrontation algorithm has significant advantages over its opponents from the aspects of both win rate and efficiency. Moreover, we discuss how vital algorithm parameters would influence the performance indices. Full article
(This article belongs to the Topic Agents and Multi-Agent Systems)
Show Figures

Figure 1

28 pages, 8105 KiB  
Review
A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles
by Hugh A. Bruck and Satyandra K. Gupta
Biomimetics 2023, 8(6), 485; https://doi.org/10.3390/biomimetics8060485 - 12 Oct 2023
Cited by 7 | Viewed by 3266
Abstract
Flapping Wing Air Vehicles (FWAVs) have proven to be attractive alternatives to fixed wing and rotary air vehicles at low speeds because of their bio-inspired ability to hover and maneuver. However, in the past, they have not been able to reach their full [...] Read more.
Flapping Wing Air Vehicles (FWAVs) have proven to be attractive alternatives to fixed wing and rotary air vehicles at low speeds because of their bio-inspired ability to hover and maneuver. However, in the past, they have not been able to reach their full potential due to limitations in wing control and payload capacity, which also has limited endurance. Many previous FWAVs used a single actuator that couples and synchronizes motions of the wings to flap both wings, resulting in only variable rate flapping control at a constant amplitude. Independent wing control is achieved using two servo actuators that enable wing motions for FWAVs by programming positions and velocities to achieve desired wing shapes and associated aerodynamic forces. However, having two actuators integrated into the flying platform significantly increases its weight and makes it more challenging to achieve flight than a single actuator. This article presents a retrospective overview of five different designs from the “Robo Raven” family based on our previously published work. The first FWAVs utilize two servo motors to achieve independent wing control. The basic platform is capable of successfully performing dives, flips, and button hook turns, which demonstrates the potential maneuverability afforded by the independently actuated and controlled wings. Subsequent designs in the Robo Raven family were able to use multifunctional wings to harvest solar energy to overcome limitations on endurance, use on-board decision-making capabilities to perform maneuvers autonomously, and use mixed-mode propulsion to increase payload capacity by exploiting the benefits of fixed and flapping wing flight. This article elucidates how each successive version of the Robo Raven platform built upon the findings from previous generations. The Robo Raven family collectively addresses requirements related to control autonomy, energy autonomy, and maneuverability. We conclude this article by identifying new opportunities for research in avian-scale flapping wing aerial vehicles. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics 2.0)
Show Figures

Figure 1

20 pages, 10605 KiB  
Article
Numerical Analysis of Bioinspired Tails in a Fixed-Wing Micro Air Vehicle
by Estela Barroso Barderas, Rafael Bardera Mora, Ángel Antonio Rodriguez-Sevillano and Juan Carlos Matías García
Aerospace 2023, 10(9), 793; https://doi.org/10.3390/aerospace10090793 - 8 Sep 2023
Cited by 3 | Viewed by 2102
Abstract
Bird tails play a key role in aerodynamics and flight stability. They produce extra lift for takeoff and landing maneuvers, enhance wing functions and maintain stability during flight (keeping the bird from yawing, rolling and pitching, or otherwise losing control). This paper investigates [...] Read more.
Bird tails play a key role in aerodynamics and flight stability. They produce extra lift for takeoff and landing maneuvers, enhance wing functions and maintain stability during flight (keeping the bird from yawing, rolling and pitching, or otherwise losing control). This paper investigates the use of bioinspired horizontal stabilizers for Micro Air Vehicles (MAVs) involving a Zimmerman wing-body geometry. A selection of five tail shapes of the main types existing in nature is presented, and a parametric analysis is conducted looking into the influence of the most relevant tail geometric parameters to increase the longitudinal static stability of the vehicle. Based on the parametric study, a smaller subset of candidate tail designs are shortlisted to perform a detailed aerodynamic analysis. Then, steady RANS CFD simulations are conducted for a higher-fidelity study of these candidate tail designs to obtain an optimum of each tail type. The criterion for selection of the optimum tail configuration is the maximum aerodynamic efficiency, CLCD , as well as a high longitudinal static stability. The squared-fan tail provides the highest aerodynamic efficiency while maintaining a high longitudinal stability of the vehicle. In conclusion, this paper provides an innovative study of improving longitudinal stability and aerodynamics through the implementation of bioinspired horizontal stabilizers in vehicles with these characteristics. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 2671 KiB  
Article
Self-Propelled Swimming of a Flexible Propulsor Actuated by a Distributed Active Moment
by Changhong Han, Zhiyu Zhang and Xing Zhang
Fluids 2023, 8(1), 29; https://doi.org/10.3390/fluids8010029 - 13 Jan 2023
Viewed by 2366
Abstract
The self-propelled swimming of a flexible propulsor is numerically investigated by using fluid-structure interaction simulations. A distributed active moment mimicking the muscle actuation in fish is used to drive the self-propulsion. The active moment imposed on the body of the swimmer takes the [...] Read more.
The self-propelled swimming of a flexible propulsor is numerically investigated by using fluid-structure interaction simulations. A distributed active moment mimicking the muscle actuation in fish is used to drive the self-propulsion. The active moment imposed on the body of the swimmer takes the form of a traveling wave. The influences of some key parameters, such as the wavenumber, the amplitude of moment density and the Reynolds number, on the performance of straight-line swimming are explored. The influence of the ground effect on speed and efficiency is investigated through the simulation of near-wall swimming. The turning maneuver is also successfully performed by adopting a simple evolution law for the leading-edge deflection angle. The results of the present study are expected to be helpful to the design of bio-inspired autonomous underwater vehicles. Full article
(This article belongs to the Special Issue Fluid-Structure Interaction with Applications in Biomechanics)
Show Figures

Figure 1

20 pages, 7987 KiB  
Article
A Bioinspired Cownose Ray Robot for Seabed Exploration
by Giovanni Bianchi, Lorenzo Maffi, Michele Tealdi and Simone Cinquemani
Biomimetics 2023, 8(1), 30; https://doi.org/10.3390/biomimetics8010030 - 12 Jan 2023
Cited by 14 | Viewed by 3395
Abstract
This article presents the design and the experimental tests of a bioinspired robot mimicking the cownose ray. These fish swim by moving their large and flat pectoral fins, creating a wave that pushes backward the surrounding water so that the fish is propelled [...] Read more.
This article presents the design and the experimental tests of a bioinspired robot mimicking the cownose ray. These fish swim by moving their large and flat pectoral fins, creating a wave that pushes backward the surrounding water so that the fish is propelled forward due to momentum conservation. The robot inspired by these animals has a rigid central body, housing motors, batteries, and electronics, and flexible pectoral fins made of silicone rubber. Each of them is actuated by a servomotor driving a link inside the leading edge, and the traveling wave is reproduced thanks to the flexibility of the fin itself. In addition to the pectoral fins, two small rigid caudal fins are present to improve the robot’s maneuverability. The robot has been designed, built, and tested underwater, and the experiments have shown that the locomotion principle is valid and that the robot is able to swim forward, perform left and right turns, and do floating or diving maneuvers. Full article
Show Figures

Figure 1

25 pages, 11239 KiB  
Article
Wing Kinematics and Unsteady Aerodynamics of a Hummingbird Pure Yawing Maneuver
by Alec Menzer, Yan Ren, Jiacheng Guo, Bret W. Tobalske and Haibo Dong
Biomimetics 2022, 7(3), 115; https://doi.org/10.3390/biomimetics7030115 - 19 Aug 2022
Cited by 17 | Viewed by 5167
Abstract
As one of few animals with the capability to execute agile yawing maneuvers, it is quite desirable to take inspiration from hummingbird flight aerodynamics. To understand the wing and body kinematics and associated aerodynamics of a hummingbird performing a free yawing maneuver, a [...] Read more.
As one of few animals with the capability to execute agile yawing maneuvers, it is quite desirable to take inspiration from hummingbird flight aerodynamics. To understand the wing and body kinematics and associated aerodynamics of a hummingbird performing a free yawing maneuver, a crucial step in mimicking the biological motion in robotic systems, we paired accurate digital reconstruction techniques with high-fidelity computational fluid dynamics (CFD) simulations. Results of the body and wing kinematics reveal that to achieve the pure yaw maneuver, the hummingbird utilizes very little body pitching, rolling, vertical, or horizontal motion. Wing angle of incidence, stroke, and twist angles are found to be higher for the inner wing (IW) than the outer wing (OW). Unsteady aerodynamic calculations reveal that drag-based asymmetric force generation during the downstroke (DS) and upstroke (US) serves to control the speed of the turn, a characteristic that allows for great maneuvering precision. A dual-loop vortex formation during each half-stroke is found to contribute to asymmetric drag production. Wake analysis revealed that asymmetric wing kinematics led to leading-edge vortex strength differences of around 59% between the IW and OW. Finally, analysis of the role of wing flexibility revealed that flexibility is essential for generating the large torque necessary for completing the turn as well as producing sufficient lift for weight support. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

16 pages, 3963 KiB  
Article
Design of a Labriform-Steering Underwater Robot Using a Multiphysics Simulation Environment
by Daniele Costa, Cecilia Scoccia, Matteo Palpacelli, Massimo Callegari and David Scaradozzi
Robotics 2022, 11(1), 11; https://doi.org/10.3390/robotics11010011 - 7 Jan 2022
Cited by 3 | Viewed by 4713
Abstract
Bio-inspired solutions devised for Autonomous Underwater Robots are currently investigated by researchers as a source of propulsive improvement. To address this ambitious objective, the authors have designed a carangiform swimming robot, which represents a compromise in terms of efficiency and maximum velocity. The [...] Read more.
Bio-inspired solutions devised for Autonomous Underwater Robots are currently investigated by researchers as a source of propulsive improvement. To address this ambitious objective, the authors have designed a carangiform swimming robot, which represents a compromise in terms of efficiency and maximum velocity. The requirements of stabilizing a course and performing turns were not met in their previous works. Therefore, the aim of this paper is to improve the vehicle maneuvering capabilities by means of a novel transmission system capable of transforming the constant angular velocity of a single rotary actuator into the pitching–yawing rotation of fish pectoral fins. Here, the biomimetic thrusters exploit the drag-based momentum transfer mechanism of labriform swimmers to generate the necessary steering torque. Aside from inertia and encumbrance reduction, the main improvement of this solution is the inherent synchronization of the system granted by the mechanism’s kinematics. The system was sized by using the experimental results collected by biologists and then integrated in a multiphysics simulation environment to predict the resulting maneuvering performance. Full article
(This article belongs to the Special Issue Kinematics and Robot Design IV, KaRD2021)
Show Figures

Figure 1

18 pages, 2737 KiB  
Article
Bio-Inspired Take-Off Maneuver and Control in Vertical Jumping for Quadruped Robot with Manipulator
by Ru Kang, Fei Meng, Lei Wang, Xuechao Chen, Zhangguo Yu, Xuxiao Fan, Ryuki Sato, Aiguo Ming and Qiang Huang
Micromachines 2021, 12(10), 1189; https://doi.org/10.3390/mi12101189 - 30 Sep 2021
Cited by 8 | Viewed by 3310
Abstract
The jumping motion of legged robots is an effective way to overcome obstacles in the rugged microgravity planetary exploration environment. At the same time, a quadruped robot with a manipulator can achieve operational tasks during movement, which is more practical. However, the additional [...] Read more.
The jumping motion of legged robots is an effective way to overcome obstacles in the rugged microgravity planetary exploration environment. At the same time, a quadruped robot with a manipulator can achieve operational tasks during movement, which is more practical. However, the additional manipulator will restrict the jumping ability of the quadruped robot due to the increase in the weight of the system, and more active degrees of freedom will increase the control complexity. To improve the jumping height of a quadruped robot with a manipulator, a bio-inspired take-off maneuver based on the coordination of upper and lower limbs is proposed in this paper. The kinetic energy and potential energy of the system are increased by driving the manipulator-end (ME) to swing upward, and the torso driven by the legs will delay reaching the required peak speed due to the additional load caused by the accelerated ME. When the acceleration of ME is less than zero, it will pull the body upward, which reduces the peak power of the leg joints. Therefore, the jumping ability of the system is improved. To realize continuous and stable jumping, a control framework based on whole-body control was established, in which the quadruped robot with a manipulator was a simplified floating seven-link model, and the hierarchical optimization was used to solve the target joint torques. This method greatly simplifies the dynamic model and is convenient for calculation. Finally, the jumping simulations in different gravity environments and a 15° slope were performed. The jump heights have all been improved after adding the arm swing, which verified the superiority of the bio-inspired take-off maneuver proposed in this paper. Furthermore, the stability of the jumping control method was testified by the continuous and stable jumping. Full article
Show Figures

Figure 1

Back to TopTop