Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bio-acidulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1657 KB  
Article
Bio-Organically Acidified Product-Mediated Improvements in Phosphorus Fertilizer Utilization, Uptake and Yielding of Zea mays in Calcareous Soil
by Khuram Shehzad Khan, Muhammad Naveed, Muhammad Farhan Qadir, Muhammad Yaseen and Manzer H. Siddiqui
Plants 2023, 12(17), 3072; https://doi.org/10.3390/plants12173072 - 27 Aug 2023
Cited by 18 | Viewed by 3029
Abstract
The demand for a better agricultural productivity and the available phosphorus (P) limitation in plants are prevailing worldwide. Poor P availability due to the high pH and calcareous nature of soils leads to a lower P fertilizer use efficiency of 10–25% in Pakistan. [...] Read more.
The demand for a better agricultural productivity and the available phosphorus (P) limitation in plants are prevailing worldwide. Poor P availability due to the high pH and calcareous nature of soils leads to a lower P fertilizer use efficiency of 10–25% in Pakistan. Among different technologies, the use of biologically acidified amendments could be a potential strategy to promote soil P availability and fertilizer use efficiency (FUE) in alkaline calcareous soils. However, this study hypothesized that an acidified amendment could lower soil pH and solubilize the insoluble soil P that plants can potentially uptake and use to improve their growth and development. For this purpose, the test plant Zea mays was planted in greenhouse pots with a recommended dose rate of 168 kg ha−1 of P for selected phosphatic fertilizers, viz., DAP (diammonium phosphate), SSP (single superphosphate), and RP (rock phosphate) with or without 2% of the acidified product and a phosphorus solubilizing Bacillus sp. MN54. The results showed that the integration of acidified amendments and PSB strain MN54 with P fertilizers improved P fertilizer use efficiency (FUE), growth, yield, and P uptake of Zea mays as compared to sole application of P fertilizers. Overall, organic material along with DAP significantly improved plant physiological-, biochemical-, and nutrition-related attributes over the sole application of DAP. Interestingly, the co-application of RP with the acidified product and MN54 showed a higher response than the sole application of DAP and SSP. However, based on our study findings, we concluded that using RP with organic amendments was a more economically and environmentally friendly approach compared to the most expensive DAP fertilizer. Taken together, the current study suggests that the use of this innovative new strategy could have the potential to improve FUE and soil P availability via pH manipulation, resulting in an improved crop productivity and quality/food security. Full article
(This article belongs to the Special Issue Soil Nutrition and Plants Growth)
Show Figures

Figure 1

12 pages, 3059 KB  
Article
Development of Root Caries Prevention by Nano-Hydroxyapatite Coating and Improvement of Dentin Acid Resistance
by Miyu Iwasaki, Ryouichi Satou and Naoki Sugihara
Materials 2022, 15(22), 8263; https://doi.org/10.3390/ma15228263 - 21 Nov 2022
Cited by 1 | Viewed by 2852
Abstract
There is no established method for optimizing the use of dentin to prevent root caries, which are increasing in the elderly population. This study aimed to develop a new approach for root caries prevention by focusing on bioapatite (BioHap), a new biomaterial, combined [...] Read more.
There is no established method for optimizing the use of dentin to prevent root caries, which are increasing in the elderly population. This study aimed to develop a new approach for root caries prevention by focusing on bioapatite (BioHap), a new biomaterial, combined with fluoride. Bovine dentin was used as a sample, and an acid challenge was performed in three groups: no fluoride (control group), acidulated phosphate fluoride treatment (APF group), and BioHap + APF treatment (BioHap group). After applying the new compound, the acid resistance of dentin was compared with that of APF alone. The BioHap group had fewer defects and an increased surface hardness than the APF group. The BioHap group had the smallest lesion depth and least mineral loss among all groups. Using a scanning electron microscope in the BioHap group showed the closure of dentinal tubules and a coating on the surface. The BioHap group maintained a coating and had higher acid resistance than the APF group. The coating prevents acid penetration, and the small particle size of BioHap and its excellent reactivity with fluoride are thought to have contributed to the improvement of acid resistance in dentin. Topical fluoride application using BioHap protects against root caries. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration (Second Volume))
Show Figures

Figure 1

Back to TopTop