Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = binary phospholipid mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2725 KB  
Article
5-PC as a Lipid Probe Molecule and as a Second Phospholipid in Binary Phospholipid Mixtures: Saturation Recovery EPR Studies
by Witold K. Subczynski and Justyna Widomska
Int. J. Mol. Sci. 2024, 25(23), 12913; https://doi.org/10.3390/ijms252312913 - 30 Nov 2024
Viewed by 1033
Abstract
Mixtures of two phospholipids (PLs) with different main phase transition temperatures were investigated. Host PLs (HPLs) were represented by DMPC, DPPC, DSPC, and DMPE. The admixed PL was the spin-labeled phosphatidylcholine 5-PC(1-palmitoyl-2-(5-doxylstearoyl)phosphatidylcholine), with a unique opportunity to monitor the properties and the local [...] Read more.
Mixtures of two phospholipids (PLs) with different main phase transition temperatures were investigated. Host PLs (HPLs) were represented by DMPC, DPPC, DSPC, and DMPE. The admixed PL was the spin-labeled phosphatidylcholine 5-PC(1-palmitoyl-2-(5-doxylstearoyl)phosphatidylcholine), with a unique opportunity to monitor the properties and the local environments of all admixed PL molecules using saturation recovery EPR methods. Below the HPL phase transition temperatures, 5-PC mixes with HPL to form two distinct pools with different rotational diffusion rates. The fluidity of the local environment in these two pools is very different, being more fluid for molecules with greater rotational diffusion rates. Above the HPL phase transition temperature, 5-PC mixes with HPL uniformly. This is independent of the HPL, observed for 5-PC concentrations from 0.25 mol% up to 20 mol% and for the wide temperature range. Assuminga very low concentration of 5-PC is an ideal probe molecule, we can conclude that small fluid phase domains made of HPL molecules are formed below the phase transition temperature of the HPL bilayers. In binary mixtures of HPLs with 5-PC, below the phase transition of HPL bilayers, fluid phase domains are created within the bulk gel phase of HPL lipids by the admixed second PL, namely 5-PC. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

15 pages, 7817 KB  
Article
The Structures of Heterogeneous Membranes and Their Interactions with an Anticancer Peptide: A Molecular Dynamics Study
by Ghulam Abbas, Alfredo E. Cardenas and Ron Elber
Life 2022, 12(10), 1473; https://doi.org/10.3390/life12101473 - 22 Sep 2022
Cited by 4 | Viewed by 2742
Abstract
We conduct molecular dynamics simulations of model heterogeneous membranes and their interactions with a 24-amino acid peptide—NAF-144–67. NAF-144–67 is an anticancer peptide that selectively permeates and kills malignant cells; it does not permeate normal cells. We examine three membranes with [...] Read more.
We conduct molecular dynamics simulations of model heterogeneous membranes and their interactions with a 24-amino acid peptide—NAF-144–67. NAF-144–67 is an anticancer peptide that selectively permeates and kills malignant cells; it does not permeate normal cells. We examine three membranes with different binary mixtures of lipids, DOPC–DOPA, DOPC–DOPS, and DOPC–DOPE, with a single peptide embedded in each as models for the diversity of biological membranes. We illustrate that the peptide organization in the membrane depends on the types of nearby phospholipids and is influenced by the charge and size of the head groups. The present study sheds light on early events of permeation and the mechanisms by which an amphiphilic peptide crosses from an aqueous solution to a hydrophobic membrane. Understanding the translocation mechanism is likely to help the design of new permeants. Full article
(This article belongs to the Special Issue Computational Modeling of Kinetics in Biological Systems)
Show Figures

Figure 1

15 pages, 2852 KB  
Article
DoE-Assisted Development of a Novel Glycosaminoglycan-Based Injectable Formulation for Viscosupplementation
by Marta Cicognani, Silvia Rossi, Gabriele Vecchi, Andrea Maria Giori and Franca Ferrari
Pharmaceutics 2020, 12(7), 681; https://doi.org/10.3390/pharmaceutics12070681 - 20 Jul 2020
Cited by 4 | Viewed by 3566
Abstract
The aim of the present work was the development of a novel glycosaminoglycan (GAG)-based injectable formulation intended for intra-articular administration that should best mimic the healthy synovial fluid. Hyaluronic acid (HA) was chosen among GAG polymers, since it is the most abundant component [...] Read more.
The aim of the present work was the development of a novel glycosaminoglycan (GAG)-based injectable formulation intended for intra-articular administration that should best mimic the healthy synovial fluid. Hyaluronic acid (HA) was chosen among GAG polymers, since it is the most abundant component of the synovial fluid. A DoE (Design of Experiment) approach was used for the development of a formulation containing two HA (very high (VHMW) and low (LMW) molecular weight) grades. The rationale for this choice is that so far, no commercial product based on a single HA grade or even on binary HA mixture possesses optimal viscoelastic properties in comparison with healthy synovial fluid. A full factorial design was chosen to investigate the influence of concentration and relative fraction of the two polymer grades (retained as factors of the model) on formulation functional (viscosity and viscoelastic) properties, which are considered response variables. Thanks to the DoE approach, the composition of the optimized HA formulation was found. The addition to such formulation of an injectable grade fat-free soy phospholipid, which was rich in phosphatidylcholine (PC), resulted in improved lubrication properties. The final HA + PC formulation, packaged in pre-filled sterile syringes, was stable in long-term and accelerated ICH (International Council for Harmonisation) storage conditions. The overall results pointed out the formulation suitability for further steps of pharmaceutical developments, namely for the passage to pilot scale. Full article
(This article belongs to the Special Issue Gels and in Situ Gelling Formulations for Drug Delivery)
Show Figures

Graphical abstract

14 pages, 2463 KB  
Article
Enzymatic Synthesis of O-Methylated Phenophospholipids by Lipase-Catalyzed Acidolysis of Egg-Yolk Phosphatidylcholine with Anisic and Veratric Acids
by Marta Okulus and Anna Gliszczyńska
Catalysts 2020, 10(5), 538; https://doi.org/10.3390/catal10050538 - 13 May 2020
Cited by 12 | Viewed by 3271
Abstract
Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most [...] Read more.
Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most effective biocatalyst for the incorporation of ANISA into phospholipids was Novozym 435. None of the tested enzymes were able to catalyze the synthesis of PC structured with VERA. The effects of different solvents, substrate molar ratios, temperature, enzyme loading, and time of the reaction on the process of incorporation of ANISA into the phospholipids were evaluated in the next step of the study. The mixture of toluene/chloroform in the ratio 9:1 (v/v) significantly increased the incorporation of ANISA into PC. The acidolysis reaction was carried out using the selected binary solvent system, 1/15 substrate molar ratio PC/ANISA, 30% (w/w) enzyme load, and temperature of 50 °C afforded after 72 h anisoylated lysophosphatidylcholine (ANISA-LPC) and anisoylated phosphatidylcholine (ANISA-PC) in isolated yields of 28.5% and 2.5% (w/w), respectively. This is the first study reporting the production of ANISA-LPC and ANISA-PC via a one-step enzymatic method, which is an environmentally friendly alternative to the chemical synthesis of these biologically active compounds. Full article
(This article belongs to the Special Issue Enzyme-Catalyzed Biotransformations)
Show Figures

Figure 1

17 pages, 2445 KB  
Article
Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques
by Carmen M. González-Henríquez, Vanessa A. Villegas-Opazo, Dallits H. Sagredo-Oyarce, Mauricio A. Sarabia-Vallejos and Claudio A. Terraza
Biosensors 2017, 7(3), 34; https://doi.org/10.3390/bios7030034 - 18 Aug 2017
Cited by 11 | Viewed by 7972
Abstract
Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the [...] Read more.
Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed—like biosensors—based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures—with differences in its aliphatic chain length—present a co-existence of two thermal responses due to non-ideal mixing. Full article
Show Figures

Figure 1

Back to TopTop