Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bilaminar co-culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2718 KiB  
Article
Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model
by Ramóna Pap, Gergely Montskó, Gergely Jánosa, Katalin Sipos, Gábor L. Kovács and Edina Pandur
Int. J. Mol. Sci. 2020, 21(9), 3175; https://doi.org/10.3390/ijms21093175 - 30 Apr 2020
Cited by 13 | Viewed by 3617
Abstract
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto–maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the [...] Read more.
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto–maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo. Full article
(This article belongs to the Special Issue Embryo Implantation and Placental Development)
Show Figures

Figure 1

19 pages, 3389 KiB  
Article
Effect of Inflammatory Mediators Lipopolysaccharide and Lipoteichoic Acid on Iron Metabolism of Differentiated SH-SY5Y Cells Alters in the Presence of BV-2 Microglia
by Edina Pandur, Edit Varga, Kitti Tamási, Ramóna Pap, Judit Nagy and Katalin Sipos
Int. J. Mol. Sci. 2019, 20(1), 17; https://doi.org/10.3390/ijms20010017 - 20 Dec 2018
Cited by 36 | Viewed by 7826
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the Gram-positive bacterial cell wall components are important mediators of neuroinflammation in sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various pro-inflammatory cytokines. It has been demonstrated [...] Read more.
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the Gram-positive bacterial cell wall components are important mediators of neuroinflammation in sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various pro-inflammatory cytokines. It has been demonstrated that disturbance of iron homeostasis of the brain is one of the underlying causes of neuronal cell death but the mechanisms contributing to this process are still questionable. In the present study, we established monocultures of differentiated SH-SY5Y cells and co-cultures of differentiated SH-SY5Y cells and BV-2 microglia as neuronal model systems to selectively examine the effect of inflammatory mediators LPS and LTA on iron homeostasis of SH-SY5Y cells both in mono- and co-cultures. We monitored the IL-6 and TNFα secretions of the treated cells and determined the mRNA and protein levels of iron importers (transferrin receptor-1 and divalent metal transporter-1), and iron storing genes (ferritin heavy chain and mitochondrial ferritin). Moreover, we examined the relation between hepcidin secretion and intracellular iron content. Our data revealed that LPS and LTA triggered distinct responses in SH-SY5Y cells by differently changing the expressions of iron uptake, as well as cytosolic and mitochondrial iron storage proteins. Moreover, they increased the total iron contents of the cells but at different rates. The presence of BV-2 microglial cells influenced the reactions of SH-SY5Y cells on both LPS and LTA treatments: iron uptake and iron storage, as well as the neuronal cytokine production have been modulated. Our results demonstrate that BV-2 cells alter the iron metabolism of SH-SY5Y cells, they contribute to the iron accumulation of SH-SY5Y cells by manipulating the effects of LTA and LPS proving that microglia are important regulators of neuronal iron metabolism at neuroinflammation. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop