error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = bifurcating microchannel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10643 KB  
Article
A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite–Arginine Nanoparticles
by Alireza Farahinia, Milad Khani, Tyler A. Morhart, Garth Wells, Ildiko Badea, Lee D. Wilson and Wenjun Zhang
Sensors 2024, 24(18), 6031; https://doi.org/10.3390/s24186031 - 18 Sep 2024
Cited by 7 | Viewed by 2704
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, [...] Read more.
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation. Full article
Show Figures

Figure 1

16 pages, 4070 KB  
Article
Behind the Non-Uniform Breakup of Bubble Slug in Y-Shaped Microchannel: Dynamics and Mechanisms
by Haoxiang Huang, Jiazheng Liu, Jialing Yu, Wentao Pan, Zhe Yan and Zhenhai Pan
Micromachines 2024, 15(6), 695; https://doi.org/10.3390/mi15060695 - 24 May 2024
Viewed by 1468
Abstract
Bubble flow in confined geometries is a problem of fundamental and technological significance. Among all the forms, bubble breakup in bifurcated microchannels is one of the most commonly encountered scenarios, where an in-depth understanding is necessary for better leveraging the process. This study [...] Read more.
Bubble flow in confined geometries is a problem of fundamental and technological significance. Among all the forms, bubble breakup in bifurcated microchannels is one of the most commonly encountered scenarios, where an in-depth understanding is necessary for better leveraging the process. This study numerically investigates the non-uniform breakup of a bubble slug in Y-shaped microchannels under different flow ratios, Reynolds numbers, and initial bubble volumes. Overall, the bubble can either breakup or non-breakup when passing through the bifurcation and shows different forms depending on flow regimes. The flow ratio-Reynolds number phase diagrams indicate a power–law transition line of breakup and non-breakup. The bubble takes longer to break up with rising flow ratios yet breaks earlier with higher Reynolds numbers and volumes. Non-breakup takes less time than the breakup patterns. Flow ratio is the origin of non-uniform breakup. Both the Reynolds number and initial volume influence the bubble states when reaching the bifurcation and thus affect subsequent processes. Bubble neck dynamics are analyzed to describe the breakup further. The volume distribution after breaking up is found to have a quadratic relation with the flow ratio. Our study is hoped to provide insights for practical applications related to non-uniform bubble breakups. Full article
Show Figures

Figure 1

28 pages, 9956 KB  
Article
Experimental Study of Flow Boiling Regimes Occurring in a Microfluidic T-Junction
by Xiangzhong Bao, Fei Yang and Xuan Zhang
Micromachines 2023, 14(12), 2235; https://doi.org/10.3390/mi14122235 - 13 Dec 2023
Viewed by 1986
Abstract
Microchannel flow boiling is an efficient cooling method for high-heat-flux electronic devices. To understand the flow boiling regime in a T-shaped microchannel, this paper prepared T-shaped microchannels of different sizes and designed an experimental platform for the visualization of flow boiling in microchannels, [...] Read more.
Microchannel flow boiling is an efficient cooling method for high-heat-flux electronic devices. To understand the flow boiling regime in a T-shaped microchannel, this paper prepared T-shaped microchannels of different sizes and designed an experimental platform for the visualization of flow boiling in microchannels, and aimed to study the evolution characteristics of two-phase flow patterns in T-shaped microchannels. The influences of the flow rate and channel size on the boiling flow pattern inside a T-shaped microchannel were experimentally observed and quantitatively described. The results indicate that the occurrence position of the vaporization core gradually migrates from branch channel to main channel as the wall temperature increases. The flow boiling at the bifurcation of the T-shaped microchannel mainly includes the extrusion fracture flow, bubble flow, plug–annular alternating flow and annular flow, in which the annular flow can be further divided into the intermittent annular flow and the stable annular flow. In addition, a high flow rate and small channel size can lead to the disappearance of the bubble flow, and the presence of the bubble flow delays the appearance of the annular flow. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flow in Microstructures)
Show Figures

Figure 1

22 pages, 14827 KB  
Article
Study on Flow and Heat Transfer Characteristics and Anti-Clogging Performance of Tree-Like Branching Microchannels
by Linqi Shui, Zhongkai Hu, Hang Song, Zhi Zhai and Jiatao Wang
Energies 2023, 16(14), 5531; https://doi.org/10.3390/en16145531 - 21 Jul 2023
Cited by 8 | Viewed by 2199
Abstract
In this paper, a tree-like branching microchannel with bifurcating interconnections is designed for gas turbine blade cooling. A theoretical analysis, experimental study, and numerical simulation of the heat transfer and hydrodynamic characteristics of the tree-like branching microchannel is performed, and the influence of [...] Read more.
In this paper, a tree-like branching microchannel with bifurcating interconnections is designed for gas turbine blade cooling. A theoretical analysis, experimental study, and numerical simulation of the heat transfer and hydrodynamic characteristics of the tree-like branching microchannel is performed, and the influence of the total number of branching levels m on the anti-clogging performance is also studied. The results indicate that the total heat transfer ratio and pressure drop ratio are closely related to the structur ne parameters. The comprehensive thermal performance increase with an increase in the ratio of Lb/L0 and fractal dimension D. Nu/Nus, f/fs, and η are increased as m increases from 3 to 5. Furthermore, the tree-like microchannel network exhibits robustness for cooling gas turbine blades. A greater total number of branching levels and a higher Re number are advantageous for enhancing the anti-clogging performance of the tree-like branching microchannel. Full article
(This article belongs to the Topic Cooling Technologies and Applications)
Show Figures

Figure 1

11 pages, 3940 KB  
Article
Red Blood Cell Partitioning Using a Microfluidic Channel with Ladder Structure
by Toru Hyakutake, Yuya Tsutsumi, Yohei Miyoshi, Manabu Yasui, Tomoki Mizuno and Mizuki Tateno
Micromachines 2023, 14(7), 1421; https://doi.org/10.3390/mi14071421 - 14 Jul 2023
Cited by 1 | Viewed by 2108
Abstract
This study investigated the partitioning characteristics of red blood cells (RBCs) within capillaries, with a specific focus on ladder structures observed near the end of the capillaries. In vitro experiments were conducted using microfluidic channels with a ladder structure model comprising six bifurcating [...] Read more.
This study investigated the partitioning characteristics of red blood cells (RBCs) within capillaries, with a specific focus on ladder structures observed near the end of the capillaries. In vitro experiments were conducted using microfluidic channels with a ladder structure model comprising six bifurcating channels that exhibited an anti-parallel flow configuration. The effects of various factors, such as the parent channel width, distance between branches, and hematocrit, on RBC partitioning in bifurcating channels were evaluated. A decrease in the parent channel width resulted in an increase in the heterogeneity in the hematocrit distribution and a bias in the fractional RBC flux. Additionally, variations in the distance between branches affected the RBC distribution, with smaller distances resulting in greater heterogeneity. The bias of the RBC distribution in the microchannel cross section had a major effect on the RBC partitioning characteristics. The influence of hematocrit variations on the RBC distribution was also investigated, with lower hematocrit values leading to a more pronounced bias in the RBC distribution. Overall, this study provides valuable insights into RBC distribution characteristics in capillary networks, contributing to our understanding of the physiological mechanisms of RBC phase separation in the microcirculatory system. These findings have implications for predicting oxygen heterogeneity in tissues and could aid in the study of diseases associated with impaired microcirculation. Full article
(This article belongs to the Special Issue Microfluidic Device Fabrication and Cell Manipulation)
Show Figures

Figure 1

18 pages, 5709 KB  
Article
Topology Optimization Design of Micro-Channel Heat Sink by Considering the Coupling of Fluid-Solid and Heat Transfer
by Yue Wang, Jiahao Wang and Xiaomin Liu
Energies 2022, 15(23), 8827; https://doi.org/10.3390/en15238827 - 23 Nov 2022
Cited by 11 | Viewed by 4492
Abstract
To investigate the effect of the target weight coefficient on the structure design of the micro-channel heat sink, an innovative method for the topology optimization design of micro-channel structures with different bifurcation angles is adopted. In this study, the improved interpolation function, density [...] Read more.
To investigate the effect of the target weight coefficient on the structure design of the micro-channel heat sink, an innovative method for the topology optimization design of micro-channel structures with different bifurcation angles is adopted. In this study, the improved interpolation function, density filtering, and hyperbolic tangent projection methods are adopted to obtain a clear topological structure of the micro-channel heat sink. The heat transfer of the micro-channel heat sink under different bifurcation angles is compared. At the same time, the influence of the two different objective functions, heat transfer, and flow energy consumption, is analyzed in the topology optimization of micro-channel heat sinks. The results show that when the bifurcation angle is 135°, both the heat transfer and the average outlet temperature of the micro-channel heat sink obtain the maximum value, and the heat transfer effect is the best. With the increase of the heat transfer weighting coefficient, the distribution of solid heat sources in the main channel increases, and the refinement of the branch channels also increases. On the other hand, although the heat transfer effect of the micro-channel heat sink is the best, the corresponding flow energy consumption is larger. Full article
(This article belongs to the Special Issue Thermal Fluids and Energy Systems)
Show Figures

Figure 1

18 pages, 4478 KB  
Article
The Thermal Performance Analysis of an Al2O3-Water Nanofluid Flow in a Composite Microchannel
by Mirza Farrukh Baig, Gooi Mee Chen and Chih Ping Tso
Nanomaterials 2022, 12(21), 3821; https://doi.org/10.3390/nano12213821 - 28 Oct 2022
Cited by 5 | Viewed by 1997
Abstract
Partial filling of porous medium insert in a channel alleviates the tremendous pressure drop associated with a porous medium saturated channel, and enhances heat transfer at an optimum fraction of porous medium filling. This study pioneered an investigation into the viscous dissipative forced [...] Read more.
Partial filling of porous medium insert in a channel alleviates the tremendous pressure drop associated with a porous medium saturated channel, and enhances heat transfer at an optimum fraction of porous medium filling. This study pioneered an investigation into the viscous dissipative forced convective heat transfer in a parallel-plate channel, partially occupied with a porous medium at the core, under local thermal non-equilibrium condition. Solving the thermal energy equation along the Darcy–Brinkman equation, new exact temperature fields and Nusselt number are presented under symmetrical isoflux thermal boundary condition. Noteworthy is the heat flux bifurcation at the interface between the clear fluid and porous medium driven by viscous dissipation, in cases where the combined hydrodynamic resistance to fluid flow and thermal resistance to fluid conduction is considerable in low Darcy number porous medium insert. However, viscous dissipation does not affect the qualitative variation of the Nusselt number with the fraction of porous medium filling. By using Al2O3-Water nanofluid as the working fluid in a uniformly heated microchannel, partially filled with an optimum volume fraction of porous medium, the heat transfer coefficient improves as compared to utilizing water. The accompanied viscous dissipation however has a more adverse impact on the heat transfer coefficient of nanofluids with an increasing Reynolds number. Full article
(This article belongs to the Special Issue Advances of Nanoscale Fluid Mechanics)
Show Figures

Figure 1

15 pages, 8741 KB  
Article
Investigation of Multiphase Flow in a Trifurcation Microchannel—A Benchmark Problem
by Eugen Chiriac, Marioara Avram and Corneliu Balan
Micromachines 2022, 13(6), 974; https://doi.org/10.3390/mi13060974 - 20 Jun 2022
Cited by 5 | Viewed by 3602
Abstract
The evolution of an interface between two immiscible liquids in a three-branch symmetric microchannel is numerically and experimentally investigated. The main goals of the paper are to correlate the numeric data with the experimental results for the tested flow case and to assess [...] Read more.
The evolution of an interface between two immiscible liquids in a three-branch symmetric microchannel is numerically and experimentally investigated. The main goals of the paper are to correlate the numeric data with the experimental results for the tested flow case and to assess the quality of the VOF procedure to trace the interface using the Fluent commercial code. The focus of the experiments was to characterize the dynamics of the oil–water interface formed in the vicinity of the bifurcation, at the entrance in the main microchannel of 400 microns width and 50 microns height. The oil core surrounded by water is visualized and micro-PIV measurements are performed in water. Experimental results qualitatively and quantitatively confirm the 3D numerical simulations. We propose the present investigated flow as a benchmark case for the study of the interface in a branching microchannel geometry. Full article
(This article belongs to the Special Issue Interfaces in Microfluidics)
Show Figures

Figure 1

9 pages, 3420 KB  
Article
Fabrication of Multiple Parallel Microchannels in a Single Microgroove via the Heating Assisted MIMIC Technique
by Dengying Zhang, Wenqiang Xing, Weiren Li, Shengming Liu, Yanli Dong, Lichun Zhang, Fengzhou Zhao, Jun Wang and Zheng Xu
Micromachines 2022, 13(3), 364; https://doi.org/10.3390/mi13030364 - 25 Feb 2022
Cited by 5 | Viewed by 3003
Abstract
For the first time, multiple parallel microchannels in a single microgroove have been fabricated by the heating-assisted micromolding in capillaries technique (HAMIMIC). Microchannel development, cross-sectional shape, and length were all explored in depth. The factors affecting the cross-sectional shape and length of the [...] Read more.
For the first time, multiple parallel microchannels in a single microgroove have been fabricated by the heating-assisted micromolding in capillaries technique (HAMIMIC). Microchannel development, cross-sectional shape, and length were all explored in depth. The factors affecting the cross-sectional shape and length of the double-microchannel were also discussed. Finally, a special-shaped PDMS guiding mold was designed to control the cross-sectional shape and length of multiple parallel microchannels for controlled growth. The HAMIMIC technique provides a low-cost, straightforward, and repeatable way to create multiple parallel microchannels in a single microgroove, and will promote the progress of bifurcated vessels and thrombus vessels preparation technology. Full article
Show Figures

Figure 1

14 pages, 4681 KB  
Article
Characteristics of Gas–Liquid Slug Flow in Honeycomb Microchannel Reactor
by Youkai Jiang, Yaheng Zhang, Jie Zhang and Zhiyong Tang
Energies 2022, 15(4), 1465; https://doi.org/10.3390/en15041465 - 17 Feb 2022
Cited by 7 | Viewed by 3486
Abstract
The gas–liquid slug flow characteristics in a novel honeycomb microchannel reactor were investigated numerically and experimentally. Computational fluid dynamics (CFD) modeling was carried out with Comsol finite element software using the phase-field method, and the simulation results were verified by micro-particle image velocimetry [...] Read more.
The gas–liquid slug flow characteristics in a novel honeycomb microchannel reactor were investigated numerically and experimentally. Computational fluid dynamics (CFD) modeling was carried out with Comsol finite element software using the phase-field method, and the simulation results were verified by micro-particle image velocimetry (micro-PIV) analysis. The breakups of liquid slugs at the bifurcations of current honeycomb microchannel followed a complex behavior, leading to non-uniformity in each branch. The pressure distribution inside the microreactor was closely related to the phase distribution. The increasing inlet gas velocity increased the gas phase volume fraction, as well as the gas slug length. Higher gas velocity resulted in stronger turbulence of the liquid phase flow field and a deviation of residence time distribution from normal distribution, but it was favorable to even more residence time during the liquid phase. There also exists a secondary flow in the gas–liquid interface. This work reveals the intrinsic intensified effect of honeycomb microchannel, and it provides guidance on future microreactor design for chemical energy conversion. Full article
Show Figures

Graphical abstract

23 pages, 15290 KB  
Article
Two-Phase Biofluid Flow Model for Magnetic Drug Targeting
by Ioannis D. Boutopoulos, Dimitrios S. Lampropoulos, George C. Bourantas, Karol Miller and Vassilios C. Loukopoulos
Symmetry 2020, 12(7), 1083; https://doi.org/10.3390/sym12071083 - 1 Jul 2020
Cited by 11 | Viewed by 3576
Abstract
Magnetic drug targeting (MDT) is a noninvasive method for the medical treatment of various diseases of the cardiovascular system. Biocompatible magnetic nanoparticles loaded with medicinal drugs are carried to a tissue target in the human body (in vivo) under the applied magnetic field. [...] Read more.
Magnetic drug targeting (MDT) is a noninvasive method for the medical treatment of various diseases of the cardiovascular system. Biocompatible magnetic nanoparticles loaded with medicinal drugs are carried to a tissue target in the human body (in vivo) under the applied magnetic field. The present study examines the MDT technique in various microchannels geometries by adopting the principles of biofluid dynamics (BFD). The blood flow is considered as laminar, pulsatile and the blood as an incompressible and non-Newtonian fluid. A two-phase model is adopted to resolve the blood flow and the motion of magnetic nanoparticles (MNPs). The numerical results are obtained by utilizing a meshless point collocation method (MPCM) alongside with the moving least squares (MLS) approximation. The numerical results are verified by comparing with published numerical results. We investigate the effect of crucial parameters of MDT, including (1) the volume fraction of nanoparticles, (2) the location of the magnetic field, (3) the strength of the magnetic field and its gradient, (4) the way that MNPs approach the targeted area, and (5) the bifurcation angle of the vessel. Full article
(This article belongs to the Special Issue Fluid Mechanics Physical Problems and Symmetry)
Show Figures

Figure 1

13 pages, 5470 KB  
Article
Bubbles Moving in Blood Flow in a Microchannel Network: The Effect on the Local Hematocrit
by David Bento, Sara Lopes, Inês Maia, Rui Lima and João M. Miranda
Micromachines 2020, 11(4), 344; https://doi.org/10.3390/mi11040344 - 26 Mar 2020
Cited by 26 | Viewed by 4212
Abstract
Air inside of blood vessels is a phenomenon known as gas embolism. During the past years, studies have been performed to assess the influence of air bubbles in microcirculation. In this study, we investigated the flow of bubbles in a microchannel network with [...] Read more.
Air inside of blood vessels is a phenomenon known as gas embolism. During the past years, studies have been performed to assess the influence of air bubbles in microcirculation. In this study, we investigated the flow of bubbles in a microchannel network with several bifurcations, mimicking part of a capillary system. Thus, two working fluids were used, composed by sheep red blood cells (RBCs) suspended in a Dextran 40 solution with different hematocrits (5% and 10%). The experiments were carried out in a polydimethylsiloxane (PDMS) microchannel network fabricated by a soft lithography. A high-speed video microscopy system was used to obtain the results for a blood flow rate of 10 µL/min. This system enables the visualization of bubble formation and flow along the network. The results showed that the passage of air bubbles strongly influences the cell’s local concentration, since a higher concentration of cells was observed upstream of the bubble, whereas a lower local hematocrit was visualized at the region downstream of the bubble. In bifurcations, bubbles may split asymmetrically, leading to an uneven distribution of RBCs between the outflow branches. Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

16 pages, 6371 KB  
Article
Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels
by Chengbin Zhang, Xuan Zhang, Qianwen Li and Liangyu Wu
Int. J. Mol. Sci. 2019, 20(21), 5516; https://doi.org/10.3390/ijms20215516 - 5 Nov 2019
Cited by 7 | Viewed by 3724
Abstract
Hydrodynamic behaviors of bubble stream flow in fractal tree-shaped microchannels is investigated numerically based on a two-dimensional volume of fluid (VOF) method. Bubble breakup is examined in each level of bifurcation and the transition of breakup regimes is discussed in particular. The pressure [...] Read more.
Hydrodynamic behaviors of bubble stream flow in fractal tree-shaped microchannels is investigated numerically based on a two-dimensional volume of fluid (VOF) method. Bubble breakup is examined in each level of bifurcation and the transition of breakup regimes is discussed in particular. The pressure variations at the center of different levels of bifurcations are analyzed in an effort to gain further insight into the underlying mechanism of bubble breakup affected by multi-levels of bifurcations in tree-shaped microchannel. The results indicate that due to the structure of the fractal tree-shaped microchannel, both lengths of bubbles and local capillary numbers decrease along the microchannel under a constant inlet capillary number. Hence the transition from the obstructed breakup and obstructed-tunnel combined breakup to coalescence breakup is observed when the bubbles are flowing into a higher level of bifurcations. Compared with the breakup of the bubbles in the higher level of bifurcations, the behaviors of bubbles show stronger periodicity in the lower level of bifurcations. Perturbations grow and magnify along the flow direction and the flow field becomes more chaotic at higher level of bifurcations. Besides, the feedback from the unequal downstream pressure to the upstream lower level of bifurcations affects the bubble breakup and enhances the upstream asymmetrical behaviors. Full article
Show Figures

Figure 1

10 pages, 2892 KB  
Article
Fabrication of 3D PDMS Microchannels of Adjustable Cross-Sections via Versatile Gel Templates
by Pui Fai Ng, Ka I Lee, Mo Yang and Bin Fei
Polymers 2019, 11(1), 64; https://doi.org/10.3390/polym11010064 - 4 Jan 2019
Cited by 9 | Viewed by 7824
Abstract
Flexible gel fibers with high stretchability were synthesized from physically cross-linked agar and covalently cross-linked polyacrylamide networks. Such gel material can withstand the temperature required for thermal curing of polydimethylsiloxane (PDMS), when the water in the gel was partially replaced with ethylene glycol. [...] Read more.
Flexible gel fibers with high stretchability were synthesized from physically cross-linked agar and covalently cross-linked polyacrylamide networks. Such gel material can withstand the temperature required for thermal curing of polydimethylsiloxane (PDMS), when the water in the gel was partially replaced with ethylene glycol. This gel template supported thermal replica molding of PDMS to produce high quality microchannels. Microchannels with different cross sections and representative 3D structures, including bifurcating junction, helical and weave networks, were smoothly fabricated, based on the versatile manipulation of gel templates. This gel material was confirmed as a flexible and reliable template in fabricating 3D microfluidic channels for potential devices. Full article
(This article belongs to the Special Issue Polymer Processing for Enhancing Textile Application)
Show Figures

Figure 1

22 pages, 29306 KB  
Article
Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples
by Linqi Shui, Jianhui Sun, Feng Gao and Chunyan Zhang
Entropy 2018, 20(5), 379; https://doi.org/10.3390/e20050379 - 18 May 2018
Cited by 16 | Viewed by 5811
Abstract
This work displays a numerical and experimental investigation on the flow and heat transfer in tree-like branching microchannels and studies the effects of dimples on the heat transfer enhancement. The numerical approach is certified by a smooth branching microchannel experiment. The verification result [...] Read more.
This work displays a numerical and experimental investigation on the flow and heat transfer in tree-like branching microchannels and studies the effects of dimples on the heat transfer enhancement. The numerical approach is certified by a smooth branching microchannel experiment. The verification result shows that the SSG turbulence model can provide a reasonable prediction. Thus, further research on the convective heat transfer in dimpled branching microchannels is conducted with the SSG turbulence model. The results indicate that the dimples can significantly improve the averaged heat transfer performance of branching microchannels, and the heat transfer increment of the branch segment increases with the increase in the branching level. However, the flow dead zones in some dimples at bifurcations and bends suppress the turbulent flow and heat transfer. Furthermore, the Nu number ratio (Nua/Nus) and thermal enhancement factor (η) both monotonously decrease as the Re number increases, while the friction factor ratio (fa/fs) changes nonlinearly. The entropy generation rates of S ˙ t and S ˙ p in all dimpled cases are lower than those in the smooth case, and the dimpled case with the streamwise spacing to diameter ratio s/D = 3 obtains the lowest value of augmentation entropy generation (Ns) under the high Re number conditions. Nua/Nus, fa/fs, and η decline with the increase in the streamwise spacing to diameter ratio (s/D) from 3 to 9; therefore, the dimpled case with s/D = 3 shows the best overall thermal performance. Full article
(This article belongs to the Special Issue Non-Equilibrium Thermodynamics of Micro Technologies)
Show Figures

Figure 1

Back to TopTop