Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = beta-lactam plus aminoglycoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4972 KiB  
Article
Comparative Genomic Profiles of Salmonella Typhimurium and Salmonella Dublin Bovine Isolates from the U.S. Indicate Possible Factors Associated with the Host Adaptation of Salmonella Dublin in the Region
by Kingsley E. Bentum, Emmanuel Kuufire, Rejoice Nyarku, Viona Osei, Benjamin Adu-Addai, Jonathan G. Frye, Charlene R. Jackson, Temesgen Samuel and Woubit Abebe
Microorganisms 2025, 13(4), 886; https://doi.org/10.3390/microorganisms13040886 - 12 Apr 2025
Viewed by 1444
Abstract
Salmonella Dublin (S. Dublin) and Salmonella Typhimurium (S. Typhimurium) are commonly linked to bovine salmonellosis. S. Dublin is, however, considered a bovine-adapted serovar for primarily infecting and thriving in cattle. Using S. Typhimurium (a generalist serovar) as a benchmark, this study [...] Read more.
Salmonella Dublin (S. Dublin) and Salmonella Typhimurium (S. Typhimurium) are commonly linked to bovine salmonellosis. S. Dublin is, however, considered a bovine-adapted serovar for primarily infecting and thriving in cattle. Using S. Typhimurium (a generalist serovar) as a benchmark, this study investigates genomic factors contributing to S. Dublin’s adaptation to cattle hosts in the U.S. A total of 1337 S. Dublin and 787 S. Typhimurium whole-genome sequences from bovine sources were analyzed with CARD (version 4.0.0), ARG-NOTT (version 6), and AMRfinderPlus (version 4.0.3) for antimicrobial resistance (AMR) genes; VFDB and AMRfinderPlus for virulence genes; AMRFinderPlus for stress genes; and Plasmidfinder for plasmids. Existing clonal groups among isolates of the two serovars were also investigated using the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing (HierCC-cgMLST) model. The results revealed minimal genomic variation among S. Dublin isolates. Comparatively, the IncX1 plasmid was somewhat exclusively identified in S. Dublin isolates and each carried an average of four plasmids (p-value < 0.05). Furthermore, S. Dublin isolates exhibited a higher prevalence of AMR genes against key antimicrobials, including aminoglycosides, beta-lactams, tetracyclines, and sulfonamides, commonly used in U.S. cattle production. Additionally, Type VI secretion system genes tssJKLM and hcp2/tssD2, essential for colonization, were found exclusively in S. Dublin isolates with over 50% of these isolates possessing genes that confer resistance to heavy metal stressors, like mercury. These findings suggest that S. Dublin’s adaptation to bovine hosts in the U.S. is supported by a conserved genetic makeup enriched with AMR genes, virulence factors, and stress-related genes, enabling it to colonize and persist in the bovine gut. Full article
(This article belongs to the Special Issue Foodborne Bacteria–Host Interactions: 2nd Edition)
Show Figures

Figure 1

2 pages, 159 KiB  
Correction
Correction: Ishikawa et al. Systematic Review of Beta-Lactam vs. Beta-Lactam plus Aminoglycoside Combination Therapy in Neutropenic Cancer Patients. Cancers 2024, 16, 1934
by Kazuhiro Ishikawa, Tomoaki Nakamura, Fujimi Kawai, Erika Ota and Nobuyoshi Mori
Cancers 2024, 16(12), 2274; https://doi.org/10.3390/cancers16122274 - 19 Jun 2024
Viewed by 838
Abstract
There was an error in the original publication [...] Full article
23 pages, 5975 KiB  
Systematic Review
Systematic Review of Beta-Lactam vs. Beta-Lactam plus Aminoglycoside Combination Therapy in Neutropenic Cancer Patients
by Kazuhiro Ishikawa, Tomoaki Nakamura, Fujimi Kawai, Erika Ota and Nobuyoshi Mori
Cancers 2024, 16(10), 1934; https://doi.org/10.3390/cancers16101934 - 19 May 2024
Cited by 2 | Viewed by 3307 | Correction
Abstract
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that [...] Read more.
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that compared anti-Pseudomonas aeruginosa beta-lactam monotherapy with any combination of an anti-Pseudomonas aeruginosa beta-lactam and an aminoglycoside were included. Result: The all-cause mortality rate of combination therapy showed no significant differences compared with that of monotherapy (RR 0.99, 95% CI 0.84 to 1.16, high certainty of evidence). Infection-related mortality rates showed that combination therapy had a small positive impact compared with the intervention with monotherapy (RR 0.83, 95% CI 0.66 to 1.05, high certainty of evidence). Regarding treatment failure, combination therapy showed no significant differences compared with monotherapy (RR 0.99, 95% CI 0.94 to 1.03, moderate certainty of evidence). In the sensitivity analysis, the treatment failure data published between 2010 and 2019 showed better outcomes in the same beta-lactam group (RR 1.10 [95% CI, 1.01–1.19]). Renal failure was more frequent with combination therapy of any daily dosing regimen (RR 0.46, 95% CI 0.36 to 0.60, high certainty of evidence). Conclusions: We found combining aminoglycosides with a narrow-spectrum beta-lactam did not spare the use of broad-spectrum antibiotics. Few studies included antibiotic-resistant bacteria and a detailed investigation of aminoglycoside serum levels, and studies that combined the same beta-lactams showed only a minimal impact with the combination therapy. In the future, studies that include the profile of antibiotic-resistant bacteria and the monitoring of serum aminoglycoside levels will be required. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

11 pages, 664 KiB  
Case Report
An Aminoglycoside-Sparing Regimen with Double Beta-Lactam to Successfully Treat Granulicatella adiacens Prosthetic Aortic Valve Endocarditis—Time to Change Paradigm?
by Alberto Pagotto, Floriana Campanile, Paola Conti, Francesca Prataviera, Paola Della Siega, Sarah Flammini, Simone Giuliano, Luca Martini, Davide Pecori, Assunta Sartor, Maria Screm, Tosca Semenzin and Carlo Tascini
Infect. Dis. Rep. 2024, 16(2), 249-259; https://doi.org/10.3390/idr16020020 - 14 Mar 2024
Cited by 1 | Viewed by 2782
Abstract
(1) Background: Granulicatella adiacens is a former nutritionally variant streptococci (NVS). NVS infective endocarditis (IE) is generally characterized by a higher rate of morbidity and mortality, partially due to difficulties in choosing the most adequate microbiological culture method and the most effective treatment [...] Read more.
(1) Background: Granulicatella adiacens is a former nutritionally variant streptococci (NVS). NVS infective endocarditis (IE) is generally characterized by a higher rate of morbidity and mortality, partially due to difficulties in choosing the most adequate microbiological culture method and the most effective treatment strategy, and partially due to higher rates of complications, such as heart failure, peripheral septic embolism, and peri-valvular abscess, as well as a higher rate of valve replacement. Depending on the affected valve (native valve endocarditisNVE, or prosthetic valve endocarditisPVE), the American Heart Association (AHA) 2015 treatment guidelines (GLs) suggest penicillin G, ampicillin, or ceftriaxone plus gentamicin (2 weeks for NVE and up to 6 weeks for PVE), while vancomycin alone may be a reasonable alternative in patients who are intolerant of β-lactam therapy. The European Society of Cardiology (ESC) 2023 GLs recommend treating NVE with penicillin G, ceftriaxone, or vancomycin for 6 weeks, suggesting combined with an aminoglycoside (AG) for at least the first 2 weeks only for PVE; likewise, the same recommendations for IE due to Enterococcus faecalis. (2) Methods: Starting from the case of a 51-year-old man with G. adiacens aortic bio-prosthesis IE who was successfully treated with aortic valve replacement combined with double beta-lactams, an AG-sparing regimen, we performed microbiology tests in order to validate this potential treatment change. (3) Results: As for E. faecalis IE, we found that the combination of ampicillin plus cephalosporines (like ceftriaxone or ceftobiprole) showed a synergistic effect in vitro, probably due to wider binding to penicillin-binding proteins (PBPs), thus contributing to enhanced bacterial killing and good clinical outcome, as well as avoiding the risk of nephrotoxicity due to AG association therapy. (4) Conclusions: Further studies are required to confirm this hypothesis, but double beta-lactams and an adequate sourcecontrol could be a choice in treating G. adiacens IE. Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

23 pages, 3885 KiB  
Article
High Prevalence of Beta-Lactam-Resistant Escherichia coli in South Australian Grey-Headed Flying Fox Pups (Pteropus poliocephalus)
by Fiona McDougall, Wayne Boardman and Michelle Power
Microorganisms 2022, 10(8), 1589; https://doi.org/10.3390/microorganisms10081589 - 7 Aug 2022
Cited by 7 | Viewed by 2809
Abstract
The emergence of antimicrobial-resistant Escherichia coli in wildlife is concerning—especially resistance to clinically important beta-lactam antibiotics. Wildlife in closer proximity to humans, including in captivity and in rescue/rehabilitation centres, typically have a higher prevalence of antimicrobial-resistant E. coli compared to their free-living counterparts. [...] Read more.
The emergence of antimicrobial-resistant Escherichia coli in wildlife is concerning—especially resistance to clinically important beta-lactam antibiotics. Wildlife in closer proximity to humans, including in captivity and in rescue/rehabilitation centres, typically have a higher prevalence of antimicrobial-resistant E. coli compared to their free-living counterparts. Each year, several thousand Australian fruit bat pups, including the grey-headed flying fox (GHFF; Pteropus poliocephalus), require rescuing and are taken into care by wildlife rescue and rehabilitation groups. To determine the prevalence of beta-lactam-resistant E. coli in rescued GHFF pups from South Australia, faecal samples were collected from 53 pups in care. A combination of selective culture, PCR, antimicrobial susceptibility testing, whole-genome sequencing, and phylogenetic analysis was used to identify and genetically characterise beta-lactam-resistant E. coli isolates. The prevalence of amoxicillin-, amoxicillin-plus-clavulanic-acid-, and cephalosporin-resistant E. coli in the 53 pups was 77.4% (n = 41), 24.5% (n = 13), and 11.3% (n = 6), respectively. GHFF beta-lactam-resistant E. coli also carried resistance genes to aminoglycosides, trimethoprim plus sulphonamide, and tetracyclines in 37.7% (n = 20), 35.8% (n = 19), and 26.4% (n = 14) of the 53 GHFF pups, respectively, and 50.9% (n = 27) of pups carried multidrug-resistant E. coli. Twelve E. coli strain types were identified from the 53 pups, with six strains having extraintestinal pathogenic traits, indicating that they have the potential to cause blood, lung, or wound infections in GHFFs. Two lineages—E. coli ST963 and ST58 O8:H25—were associated with human extraintestinal infections. Phylogenetic analyses determined that all 12 strains were lineages associated with humans and/or domestic animals. This study demonstrates high transmission of anthropogenic-associated beta-lactam-resistant E. coli to GHFF pups entering care. Importantly, we identified potential health risks to GHFF pups and zoonotic risks for their carers, highlighting the need for improved antibiotic stewardship and biosafety measures for GHFF pups entering care. Full article
(This article belongs to the Special Issue Wild Animal Pathogens and Antimicrobial Resistance)
Show Figures

Figure 1

Back to TopTop