Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = benzoylurea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2680 KiB  
Article
Effects of Novaluron Exposure on the Oviposition and Expression of Ovarian Development Related Genes in Silkworm, Bombyx mori (Lepidoptera: Bombycidae)
by Meng-Jiao Wang, En-Xi Chen, Yi-Lin Ji, Yi-Xuan Qian, Yu-Ming Zhang, Lin Zhu, Guo-Dong Zhao and He-Ying Qian
Insects 2025, 16(1), 9; https://doi.org/10.3390/insects16010009 - 27 Dec 2024
Viewed by 1004
Abstract
Bombyx mori (Lepidoptera: Bombycidae) is an important economic insect, which mainly feeds on mulberry leaves and is widely used in many research fields. The growth and development of silkworm larvae are easily affected by the use of chemical insecticides such as novaluron, a [...] Read more.
Bombyx mori (Lepidoptera: Bombycidae) is an important economic insect, which mainly feeds on mulberry leaves and is widely used in many research fields. The growth and development of silkworm larvae are easily affected by the use of chemical insecticides such as novaluron, a benzoylurea insecticide. However, the effect of novaluron exposure on the reproduction of silkworms has not yet been studied. In this study, the effect of trace novaluron on the oviposition of silkworms and histopathological changes were first evaluated, and then the gene expression level changes after novaluron exposure were also determined by employing qRT-PCR. It was found that the number of eggs and the hatching rate of eggs in silkworms decreased significantly after feeding on leaves with a trace amount of novaluron (p ≤ 0.01). Furthermore, novaluron exposure could affect the development of ovary tissue by reducing the number of oocytes and oogonia in the ovaries of silkworms fed with novaluron. In addition, the transcription levels of genes related to ovary development (Vg, Ovo, Otu, Sxl-S and Sxl-L) and hormone regulation (EcR and JHBP2) showed varying degrees of downregulation at 24 h, 48 h, and 72 h after novaluron treatment (p ≤ 0.05). Therefore, we speculated that novaluron can affect the energy metabolism, ovary development, and egg formation of silkworms, thus leading to reproductive disorders of silkworms after novaluron exposure. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Figure 1

10 pages, 636 KiB  
Article
Fitness Costs in Diamondback Moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) Resistant to Lufenuron, A Chitin-Synthesis Inhibitor Insecticide
by Natalia C. Bermúdez, Nataly de la Pava, Deividy V. Nascimento, Lilian M. S. Ribeiro, Herbert A. A. Siqueira and Jorge B. Torres
Insects 2024, 15(11), 856; https://doi.org/10.3390/insects15110856 - 2 Nov 2024
Viewed by 1535
Abstract
The diamondback moth (DBM), Plutella xylostella, is the main pest of Brassicas crops worldwide, and its recorded resistance to 101 active ingredients indicates it is difficult to control. The purpose of this study was to investigate the hypothesis that P. xylostella has fitness [...] Read more.
The diamondback moth (DBM), Plutella xylostella, is the main pest of Brassicas crops worldwide, and its recorded resistance to 101 active ingredients indicates it is difficult to control. The purpose of this study was to investigate the hypothesis that P. xylostella has fitness costs associated with its resistance to lufenuron, a chitin-synthesis inhibitor insecticide. Thus, concentration–mortality bioassays were performed for susceptible (REC-S), resistant (BZR-R) populations, their progenies F1 and F1′, and one established population without selection pressure (BZR-Rns) after four generations. A fertility life table was used to assess the biological performance of the REC-S and BZR-R. BZR-Rns of P. xylostella. The larval stage, longevity, and survival differed between populations. The reproductive rate (R0) was significantly lower in the F1 (♀R × ♂S) (28.19) and F1′ (♀S × ♂R) (34.06) progenies compared with their parents, but not with the relaxed BZR-Rns (39.39). The mean generation time (T), intrinsic rate of population growth (rm), and doubling time (DT) differed between REC-S and progenies, with fitness of 0.52 and 0.64 for F1 and F1′, respectively. Overall, the results suggest that the resistance of P. xylostella to lufenuron is stable and that low fitness costs appear to be associated with resistance to lufenuron, although heterozygotes showed lower fitness than their parents. Strategies such as preserving refuge areas, rotation of modes of action, etc., are essential for resistance management and prolonging the efficacy of control agents; this highlights the importance of integrated insecticide resistance management. Full article
Show Figures

Figure 1

13 pages, 1645 KiB  
Article
Synthesis, Antifungal, and Antibacterial Activities of Novel Benzoylurea Derivatives Containing a Pyrimidine Moiety
by Jiansong An, Wenjun Lan, Qiang Fei, Pei Li and Wenneng Wu
Molecules 2023, 28(18), 6498; https://doi.org/10.3390/molecules28186498 - 7 Sep 2023
Cited by 7 | Viewed by 1929
Abstract
To explore more efficient and less toxic antibacterial and antifungal pesticides, we utilized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed by 1H NMR, 13C NMR, 19 [...] Read more.
To explore more efficient and less toxic antibacterial and antifungal pesticides, we utilized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed by 1H NMR, 13C NMR, 19F NMR, and HRMS. The bioassay results demonstrated that some of the title compounds exhibited moderate to good in vitro antifungal activities against Botrytis cinerea in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhizoctonia solani. Notably, compounds 4j and 4l displayed EC50 values of 6.72 and 5.21 μg/mL against Rhizoctonia solani, respectively, which were comparable to that of hymexazol (6.11 μg/mL). Meanwhile, at 200 and 100 concentrations, the target compounds 4a4w exhibited lower in vitro antibacterial activities against Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri, respectively, compared to those of thiodiazole copper. Furthermore, the molecular docking simulation demonstrated that compound 4l formed hydrogen bonds with SER-17 and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antifungal and antibacterial activities of novel benzoylurea derivatives containing a pyrimidine moiety. Full article
Show Figures

Graphical abstract

18 pages, 4608 KiB  
Article
Fitness Costs of Chlorantraniliprole Resistance Related to the SeNPF Overexpression in the Spodoptera exigua (Lepidoptera: Noctuidae)
by Changwei Gong, Xinge Yao, Qunfang Yang, Xuegui Wang, Yuming Zhang, Yumeng Wang and Litao Shen
Int. J. Mol. Sci. 2021, 22(9), 5027; https://doi.org/10.3390/ijms22095027 - 10 May 2021
Cited by 10 | Viewed by 2964
Abstract
Spodopteraexigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six [...] Read more.
Spodopteraexigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six generations. The potential oviposited eggs and oviposition rate of the SE-Sel strain were dramatically lower than those of the SE-Sus strain; on the contrary, the weights of prepupae and preadult were significantly increased. As a post-mating response, the higher number of non-oviposited eggs in the SE-Sel strain was caused by a lower mating rate. In addition, the expression levels of vitellogenin (SeVg) and its receptor (SeVgR) in the SE-Sel strain were consistently lower than those in the SE-Sus strain. An RyRI4743M mutation, contributing to the resistance to chlorantraniliprole, was located in the S3 transmembrane segments and might have affected the release of calcium ions; it led to the upregulated expression of the neuropeptide SeNPF and its receptor SeNPFR, and the mating and oviposition rate were significantly recovered when the SeNPF was knocked down though RNA interference (RNAi) in the male adult of the SE-Sel strain. Moreover, the expression of the juvenile hormone-binding proteins SeJHBWDS3 and SeJHBAN in the male adult of the SE-Sel strain was significantly decreased, which proved the existence of a fitness cost from another angle. Therefore, these results indicate that the fitness cost accompanied by chlorantraniliprole resistance in S. exigua may be related to the decrease in mating desire due to SeNPF overexpression. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

Back to TopTop